Metabolism of Lipids

  • Norbert Katz


The integration of lipid metabolism is maintained predominantly by the liver. Excessive dietary glucose can be converted to fatty acids that are esterifled and exported in triglyceride-rich very-low-density lipoproteins. Excessive fatty acids provided by lipolysis in adipose tissue are either reesterified or converted to ketones via β-oxidation in the liver. Cholesterol is transferred by lipoproteins from peripheral organs to the liver for excretion into the bile. This is the main mechanism by which cholesterol is eliminated. The chapter reviews the pathways of lipid metabolism in the liver, including interorgan relationships and lipoprotein turnover. The short- and long-term regulation by substrates and hormones is described along with aspects of the zonal heterogeneity of lipid metabolism.


Adipose Tissue Fatty Acid Synthesis Ketone Body Cholic Acid Lipogenic Enzyme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark, D. G., Rognstad, R., and Katz, J., 1974, Lipogenesis in rat hepatocytes, J. Biol. Chem. 249: 2028–2036.PubMedGoogle Scholar
  2. 2.
    Brunnengraber, H., Boutry, M., and Lowenstein, J. M., 1973, Fatty acid and 3-β-hydroxysterol synthesis in the perfused rat liver, J. Biol. Chem. 248: 2656–2669.Google Scholar
  3. 3.
    Walli, R., 1978, Interrelation of aerobic glycolysis and lipogenesis in isolated perfused liver of well fed rats, Biochim. Biophys. Acta 539: 62–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Hoffmann, G. E., Andres, H., Weiss, L., Kreissel, C., and Sander, R., 1980, Lipogenesis in man, Biochim. Biophys. Acta 620: 151–158.PubMedGoogle Scholar
  5. 5.
    Cahill, G. F., Marliss, E. B., and Aoki, T. T., 1970, Fat and nitrogen metabolism in fasting man, in: Adipose Tissue: Regulation and Functions (B. Jeanrenaud and D. Hepp, eds., pp. 181–185, Thieme, Stuttgart.Google Scholar
  6. 6.
    Mannaerts, G. P., Debeer, L. J., Thomas, J., and De Schepper, P. J., 1979, Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats, J. Biol. Chem. 254: 4585–4595.PubMedGoogle Scholar
  7. 7.
    Jungermann, K., 1983, Role of the liver in metabolism of carbohydrates, in: Liver in Metabolic Diseases (L. Bianchi, W. Gerok, L. Landmann, K. Sickinger, and G. A. Stalder, eds.), pp. 207–220, MTP Press, Boston.Google Scholar
  8. 8.
    Hems, D. A., 1977, Short-term hormonal control of hepatic carbohydrate and lipid metabolism, FEBS Lett. 80: 237–245.PubMedCrossRefGoogle Scholar
  9. 9.
    Debeer, L. J., Beynen, A. C., Mannaerts, G. P., and Geelen, M. J. H., 1982, Lipolysis of hepatic triacylglycerol stores, FEBS Lett. 140: 159–164.PubMedCrossRefGoogle Scholar
  10. 10.
    Mayes, P. A., 1970, Studies of the major pathways of hepatic lipid metabolism using the perfused liver, in: Adipose Tissue: Regulation and Functions, B. Jeanrenaud and D. Hepp, eds.), pp. 186–195, Thieme, Stuttgart.Google Scholar
  11. 11.
    Ontko, J. A., 1972, Metabolism of free fatty acids in isolated liver cells, J. Biol. Chem. 247: 1788–1800.PubMedGoogle Scholar
  12. 12.
    Shafrir, E., 1978, Absence of ketosis during glucocorticoid induced fat mobilization, in: Biochemical and Clinical Aspects of Ketone Body Metabolism (H. D. Soeling and C. D. Seufer, eds.), pp. 127–136, Thieme, Stuttgart.Google Scholar
  13. 13.
    Owen, O. E., Patel, M. S., and Boden, G., 1978, Ketone body metabolism in humans during health and disease, in: Biochemical and Clinical Aspects of Ketone Body Metabolism (H. D. Soeling and C. D. Seufer, eds.), pp. 155–165, Thieme, Stuttgart.Google Scholar
  14. 14.
    Newsholm, E. A., 1976, Role of the liver in integration of fat and carbohydrate metabolism and clinical implications in patients with liver disease, in: Progress in Liver Diseases, Vol. 5 (H. Popper and F. Schaffner, eds.), pp. 125–135, Grune and Stratton, New York.Google Scholar
  15. 15.
    Owen, J. S., and McIntyre, N., 1982, Plasma lipoprotein metabolism and lipid transport, Trends Biochem. Sci. 7: 95–98.CrossRefGoogle Scholar
  16. 16.
    Brown, M. S., and Goldstein, J. L., 1983, Lipoprotein receptors in the liver, J. Clin. Invest. 72: 743–747.PubMedCrossRefGoogle Scholar
  17. 17.
    Sherill, B. C., and Ditschy, J. M., 1978, Characterization of the sinusoidal transport process responsible for uptake of chylomicrons by the liver, J. Biol. Chem. 253: 1859–1867.Google Scholar
  18. 18.
    Brown, M. S., Kovanen, P. T., and Goldstein, J. L., 1981, Regulation of plasma cholesterol by lipoprotein receptors, Science 212: 628–635.PubMedCrossRefGoogle Scholar
  19. 19.
    Tall, A. R., and Small, D. M., 1979, Body cholesterol removal: Role of plasma nigh density lipoproteins, Adv. Lipid Res. 17: 1–51.Google Scholar
  20. 20.
    Nicoll, A., Miller, N. E., and Lewis, B., 1979, High density lipoprotein metabolism, Adv. Lipid Res. 17: 53–106.Google Scholar
  21. 21.
    Ogiwara, H., Tanabe, T., Nikawa, J., and Numa, S., 1978, Inhibition of rat liver acetyl-CoA carboxylase by palmitoyl-coenzyme A, Eur. J. Biochem. 89: 33–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Halestrap, A. P., and Denton, R. M., 1974, Hormonal regulation of adipose tissue acetyl-CoA carboxylase by changes in the polymeric state of the enzyme, Biochem. J. 142: 365–377.PubMedGoogle Scholar
  23. 23.
    Siess, E. A., Brocks, D. G., Lattke, H. K., and Wieland, O., 1977, Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate, Biochem. J. 166: 225–235.PubMedGoogle Scholar
  24. 24.
    Yeh, L.-A., Song, C.-S., and Kim K.-H., 1981, Coenzyme A activation of acetyl-CoA car-boxylase, J. Biol. Chem. 256: 2289–2296.PubMedGoogle Scholar
  25. 25.
    Witters, L. A., Moriarity, D., and Martin, D. B., 1979, Regulation of hepatic acetyl coenzyme A carboxylase by insulin and glucagon, J. Biol. Chem. 254: 6644–6649.PubMedGoogle Scholar
  26. 26.
    Ly, S., and Kim K.-H., 1981, Inactivation of hepatic acetyl-CoA carboxylase by catecholamine and its agonists through the α-adrenergic receptors, J. Biol. Chem. 256: 11, 585–11, 590.Google Scholar
  27. 27.
    Krakower, G. R., and Kim, K.-H., 1980, Dephosphorylation and activation of acetyl-CoA carboxylase by phosphorylase phosphatase, Biochem. Biophys. Res. Commun. 92: 389–395.PubMedCrossRefGoogle Scholar
  28. 28.
    Witters, L. A., 1981, Insulin stimulates phosphorylation of acetyl-CoA carboxylase, Biochem. Biophys. Res. Commun. 100: 872–878.PubMedCrossRefGoogle Scholar
  29. 29.
    Janski, A. M., Srere, P. A., Cornell, P. A., and Veech, R. L., 1979, Phosphorylation of ATP citrate lyase in response to glucagon, J. Biol. Chem. 254: 9365–9368.PubMedGoogle Scholar
  30. 30.
    Hardie, G., 1981, Fat and phosphorylation-the role of the covalent enzyme modification in lipid synthesis, Trends Biochem. Sci. 6: 75–77.CrossRefGoogle Scholar
  31. 31.
    Gibson, D. M., Lyons, R. T., Scott, D. F., and Muto, Y., 1972, Synthesis and degradation of lipogenic enzymes of rat liver, Adv. Enzyme Regul. 10: 187–204.PubMedCrossRefGoogle Scholar
  32. 32.
    Nepokroeff, C.M., Lakshmanan, M. R., Ness, G. D., Muesing, R. A., Kleinsek, D. A., and Porter, J. W., 1974, Coordinate control of rat liver lipogenic enzymes by insulin, Arch. Biochem. Biophys. 162: 340–344.PubMedCrossRefGoogle Scholar
  33. 33.
    Spence, J. T., and Pitot, H. C., 1982, Induction of lipogenic enzymes in primary cultures of rat hepatocytes, Eur. J. Biochem. 128: 15–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Katz, N. R., and Giffhorn, S., 1983, Glucose-and insulin-dependent induction of ATP citrate lyase in primary cultures of rat hepatocytes, Biochem. J. 212: 65–71.PubMedGoogle Scholar
  35. 35.
    Giffhorn, S., and Katz, N. R., 1984, Glucose-dependent induction of acetyl-CoA carboxylase in rat hepatocyte cultures, Biochem. J. 221: 343–350.PubMedGoogle Scholar
  36. 36.
    Nakanishi, S., and Numa, S., 1970, Purification of rat liver acetyl-CoA carboxylase and im-munochemical studies on its synthesis and degradation, Eur. J. Biochem. 16: 161–173.PubMedCrossRefGoogle Scholar
  37. 37.
    Deter, R. I., and De Duve, C., 1967, Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes, J. Cell Biol. 33: 437–449.PubMedCrossRefGoogle Scholar
  38. 38.
    McGarry, J. D., Mannaerts, G. P., and Foster, D. W., 1977, A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis, J. Clin. Invest. 60: 265–270.PubMedCrossRefGoogle Scholar
  39. 39.
    McGarry, J. D., and Foster, D. W., 1979, In support of the roles of malonyl-CoA and carnitine acyltransferase I in the regulation of hepatic fatty acid oxidation and ketogenesis, J. Biol. Chem. 254: 8163–8168.PubMedGoogle Scholar
  40. 40.
    Snoswell, A. M., and Henderson, G. D., 1970, Aspects of carnitine ester metabolism in sheep liver, Biochem. J. 119: 59–65.PubMedGoogle Scholar
  41. 41.
    McGarry, J. D., Robles-Valdes, C., and Foster, D. W., 1975, Role of carnitine in hepatic ketogenesis, Proc. Natl. Acad. Sci. U.S.A. 72: 4385–4388.PubMedCrossRefGoogle Scholar
  42. 42.
    Zammit, V. A., 1981, Intrahepatic regulation of ketogenesis, Trends Biochem. Sci. 6: 46–49.CrossRefGoogle Scholar
  43. 43.
    Weiss. L., and Löffler, G., 1970, Interrelationship between adipose tissue and liver: Gluco-neogenesis and ketogenesis, in: Adipose Tissue: Regulation and Functions (B. Jeanrenaud and D. Hepp, eds.), pp. 196–203, Thieme, Stuttgart.Google Scholar
  44. 44.
    Newsholm, E. A., and Start, C., 1973, Regulation in Metabolism, pp. 315–323, Wiley, London.Google Scholar
  45. 45.
    Quandt, L., and Huth, W., 1984, Modulation of rat liver mitochondrial acetyl-CoA acetyl transferase activity by a reversible chemical modification with coenzyme A, Biochim. Biophys. Acta 784: 168–176.PubMedCrossRefGoogle Scholar
  46. 46.
    Reed, W. D., Clinkenbeard, K. D., and Lane, M. D., 1975, Molecular and catalytic properties of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase of liver, J. Biol. Chem. 250: 3117–3125.PubMedGoogle Scholar
  47. 47.
    Menahan, L. A., Hron, W. T., Hinkelman, D. G., and Miziorko, H. M., 1981, Interrelationships between 3-hydroxy-3-methylglutaryl-CoA synthase, acetoacetyl-CoA and ketogenesis, Eur. J. Biochem. 119: 287–294.PubMedCrossRefGoogle Scholar
  48. 48.
    Saggerson, E. D., and Bates, E. J., 1981, Regulation of glycerolipid synthesis, in: Short Term Regulation of Liver Metabolism (L. Hue and G. Van de Werve, eds.), pp. 247–262, Elsevier, Amsterdam.Google Scholar
  49. 49.
    Bates, E. J., and Saggerson, E. D., 1979, A study of the glycerol phosphate acyltransferase and dihydroxyacetone phosphate acyltransferase activities in rat liver mitochondrial and micro-somal fractions, Biochem. J. 182: 751–762.PubMedGoogle Scholar
  50. 50.
    Balint, J. A., 1982, Lipid metabolism in relation to liver physiology and disease, in: The Liver Annual 2 (I. M. Arias, M. Frenkel, and J. H. P. Wilson, eds.), pp. 16–27, Excerpta Medica, Amsterdam.Google Scholar
  51. 51.
    Beynen, A. C., Haagsman, H. P., Van Golde, L. M. G., and Geelen, M. J. H., 1981, The effects of insulin and glucagon on the release of triacylglycerols by isolated rat hepatocytes, Biochim. Biophys. Acta 665: 1–7.PubMedGoogle Scholar
  52. 52.
    Hui, D. Y., Innerarity, T. L., and Mahley, R. W., 1981, Lipoprotein binding to canine hepatic membranes, J. Biol. Chem. 256: 5646–5655.PubMedGoogle Scholar
  53. 53.
    Angelin, B., Raviola, C. A., Innerarity, T. L., and Mahley R. W., 1983, Regulation of hepatic lipoprotein receptors in the dog, J. Clin. Invest. 71: 816–831.PubMedCrossRefGoogle Scholar
  54. 54.
    Katz, N. R., Fischer, W., and Ick, M., 1983, Heterogeneous distribution of ATP citrate lyase in rat liver parenchyma, Eur. J. Biochem. 130: 297–301.PubMedCrossRefGoogle Scholar
  55. 55.
    Katz, N. R., Fischer, W., and Giffhorn, S., 1983, Distribution of enzymes of fatty acid and ketone body metabolism in periportal and perivenous rat liver tissue, Eur. J. Biochem. 135: 103–107.PubMedCrossRefGoogle Scholar
  56. 56.
    Katz, N., and Giffhorn, S., 1985, Predominance of liponeogenesis in the perivenous zone of the rat liver acinus, J. Hepatol. Suppl. 1: S74.Google Scholar
  57. 57.
    Morrison, G. R., Brock, F. E., Karl, I. E., and Shank, R. E., 1965, Quantitative analysis of regenerating and degenerating areas within the lobule of carbon tetrachloride-injured liver, Arch. Biochem. Biophys. 111: 448–460.PubMedCrossRefGoogle Scholar
  58. 58.
    Welsh, F. A., 1972, Changes in distribution of enzymes within the liver lobule during adaptive increases, J. Histochem. Cytochem. 20: 107–111.PubMedCrossRefGoogle Scholar
  59. 59.
    Teutsch, H. F., and Rieder, H., 1979, NADP+-dependent dehydrogenases in rat liver parenchyma. II. Comparison of qualitative and quantitative G6PDH distribution patterns with particular reference to sex differences, Histochemistry 60: 43–52.PubMedCrossRefGoogle Scholar
  60. 60.
    Teutsch, H. F., 1981, Chemomorphology of liver parenchyma: Qualitative histochemical distribution patterns and quantitative sinusoidal profiles of G6Pase, G6PDH and malic enzyme activity and of glycogen content, Prog. Histochem. Cytochem. 14(3): 1–92.PubMedCrossRefGoogle Scholar
  61. 61.
    Rieder, H., 1981, NADP+-dependent dehydrogenases in rat liver parenchyma. III. The description of a lipogenic area on the basis of histochemically demonstrated enzyme activities, Histochemistry 72: 579–615.PubMedCrossRefGoogle Scholar
  62. 62.
    Hildebrand, R., 1980, Nuclear volume and cellular metabolism, Adv. Anat. Embryol. Cell Biol. 60: 1–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Morrison, G., and Brock, F. E., 1967, Quantitative measurement of alcohol dehydrogenase in the lobule of normal livers, J. Lab. Clin. Med. 70: 116–120.PubMedGoogle Scholar
  64. 64.
    Loud, A. V., 1968, Quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells, J. Cell Biol. 37: 27–46.PubMedCrossRefGoogle Scholar
  65. 65.
    Jones, A. L., Schmucker, D. L., Mooney, J. S., Adler, R. D., and Ockner, R. K., 1978, A quantitative analysis of hepatic ultrastructure in rats during enhanced bile secretion, Anat. Rec. 192: 227–228.CrossRefGoogle Scholar
  66. 66.
    Daoust, R., 1979, Histochemical comparison of local losses of RNase and ATPase activities in preneoplastic rat livers, J. Histochem. Cytochem. 27: 653–656.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Norbert Katz
    • 1
  1. 1.Institut für BiochemieUniversität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations