Brain Peptides, Neuroleptic-Induced Tolerance, and Dopamine Receptor Supersensitivity

Implications in Tardive Dyskinesia
  • Hemendra N. Bhargava


The number of prescriptions written in an average community in the United States includes 20% for medication intended to affect mental processes (Baldessarini, 1980). Among these medications are several classes of drugs that are effective in the symptomatic treatment of psychoses. The phenothiazines as a class, and especially fluphenazine, the prototype, are the most widely used in the treatment of psychotic patients. Another drug used to treat psychosis is haloperidol, which is a butyrophenone derivative. Although structurally different from phenothiazines, haloperidol shares many of their pharmacological properties. These agents have been shown to be effective in the treatment of the manic phase of manic-depressive illnesss and in schizophrenia.


Dopamine Receptor Adenylate Cyclase Tartaric Acid Tardive Dyskinesia Neuroleptic Drug 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. M., Lane, J. D., and Brauchi, J. T., 1980, Amantadine reduces haloperidol-induced dopamine receptor hypersensitivity in the striatum, Eur. J. Pharmacol. 65: 313–315.PubMedCrossRefGoogle Scholar
  2. Anden, N. E., 1972, Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and antiacetylcholine drugs, J. Pharm. Pharmacol. 24: 905–906.PubMedCrossRefGoogle Scholar
  3. Angst, J., Bente, D., Berner, P., Heimann, H., Helmchen, H., and Hippius, H., 1971, Das Klinische Wirkungs bild von clozapine (Unterschung mit dem AMP-system), Pharmacopsychiatria. 4: 201–211.CrossRefGoogle Scholar
  4. Asper, H., Baggiolini, M., Burki, H. R., Lauener, H., Ruch, W., and Stille, G., 1973, Tolerance phenomena with neuroleptics: Catalepsy, apomorphine stereotypies and strital dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol, Eur. J. Pharmacol. 22: 287–294.PubMedCrossRefGoogle Scholar
  5. Baldessarini, R. J., 1980, Drugs and the treatment of psychiatric disorders, in: The Pharmacological Basis of Therapeutics A. G. Gilman, L. S. Goodman, and A. Gilman, eds., pp. 391–447, Macmillan, New York.Google Scholar
  6. Barbeau, A., Roy, M., and Kastin, A. J., 1976, Double-blind evaluation of oral L-prolyl-L-leucylglycinamide in Parkinson’s disease, Can. Med. Assoc. J. 24: 120–122.Google Scholar
  7. Bhargava, H. N., 1981, The effects of hypothalamic peptide factor MIF, and its cyclic analog on tolerance to haloperidol in the rat, Life Sci. 29: 45–51.PubMedCrossRefGoogle Scholar
  8. Bhargava, H. N., 1982, Effects of melanotropin release inhibiting factor, and related compounds, on 3H-spiroperidol and 3H-apomorphine binding to rat striatal and hypothalamic dopamine receptors, Pharmacologist 24: 121.Google Scholar
  9. Bhargava, H. N., 1983a, The effect of melanotropin release inhibiting factor, its metabolites and analogs on 3H-spiroperidol and 3H-apomorphine binding sites, Gen. Pharmacol. 14: 609–614.PubMedCrossRefGoogle Scholar
  10. Bhargava, H. N., 1983b, Cyclo(Leu-Gly): A possible treatment for tardive dyskinesia? in: Modern Problems of Pharmacopsychiatry, “New Directions in Tardive Dyskinesia Research, Vol. 21 ( J. Bannet and R. H. Belmaker, eds.), pp. 196–205, Karger, Basel.Google Scholar
  11. Bhargava, H. N., 1984a, Effects of prolyl-leucyl-glycinamide and cyclo(leucyl-glycine) on the supersensitivity of brain dopamine receptors induced by chronic administration of haloperidol to rats, Neuropharmacology 23: 439–444.PubMedCrossRefGoogle Scholar
  12. Bhargava, H. N., 1984b, Enhanced 3H-spiroperidol binding induced by chronic haloperidol treatment inhibited by peptides administered during the withdrawal phase, Life Sci. 34: 887–879.CrossRefGoogle Scholar
  13. Bhargava, H. N., and Ritzmann, R. F., 1980, Inhibition of neuroleptic-induced dopamine receptor supersensitivity by cyclo(Leu-Gly), Pharmacol. Biochem. Behay. 13: 633–636.CrossRefGoogle Scholar
  14. Branchey, M. H., Branchey, L. B., Bark, N. M., and Richardson, M. A., 1979, Lecithin in the treatment of tardive dyskinesia, Commun. Psychopharmacol. 3: 303–307.PubMedGoogle Scholar
  15. Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K., 1973, Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol. Exp. Ther. 185: 560–571.PubMedGoogle Scholar
  16. Burnett, G. B., Prange, A. J., Wilson, I. C., Joliff, L. A., Creese, I., and Snyder, S. H., 1980, Adverse effect of anticholinergic-antiparkinsonian drugs in tardive dyskinesia: An investigation of mechanism, Neuropsychobiology 6: 109–120.PubMedCrossRefGoogle Scholar
  17. Burt, D. R., Creese, I., and Snyder, S. H., 1977, Antischizophrenic drugs: Chronic treatment elevates dopamine receptor binding in brain, Science 197: 326–328.CrossRefGoogle Scholar
  18. Carlsson, A., and Lindquist, M., 1963, Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. Toxicol. 20: 140–144.Google Scholar
  19. Casey, D. E., Gerlach, J., and Sinunelsgaard, H., 1979, Sulpiride in tardive dyskinesia, Psycho-pharmacology 66: 73–77.Google Scholar
  20. Christian, A. V., and Moller-Nielsen, I., 1979, Dopaminergic supersensitivity: Influence of dopamine agonists, cholinergics„ anticholinergics, and drugs used for the treatment of tardive dyskinesia, Psychopharmacology 62: 111–116.CrossRefGoogle Scholar
  21. Christiansen, E., Moller, J. E., and Fourbye, A., 1970, Neuropathological investigation of 28 brains from patients with dyskinesia, Acta Psychiatr. Scand. 46: 14–23.Google Scholar
  22. Clement-Cormier, Y. C., Kebabian, J. W., Petzoid, G. L., and Greengard, P., 1974, Dopamine sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs, Proc. Natl. Acad. Sci. USA 71: 1113–1117.PubMedCrossRefGoogle Scholar
  23. Crane, G. E., 1968, Tardive dyskinesia in patients treated with major neuroleptics: A review of the literature, Am. J. Psychiatry 124: 40–48.Google Scholar
  24. Creese, I., Usdin, T. B., and Snyder, S. H., 1979, Dopamine receptor binding regulated by guanine nucleotides, Mol. Pharmacol. 16: 69–76.Google Scholar
  25. Das, S., and Bhargava, H. N., 1986, Effects of Pro-Leu-Gly-NH2 and cyclo(Leu-Gly) on the binding of 3H-quinuclidinyl benzilate to striatal cholinergic muscarinic receptors, Peptides (in press).Google Scholar
  26. Ebstein, R. P. Pickholz, D., and Belmaker, R. H., 1979, Dopamine receptor changes after longterm haloperidol treatment in rats, J. Pharm. Pharmacol. 31: 558–559.Google Scholar
  27. Ehrensing, R. H., Kastin, A. J. Larsons, P. F., and Bishop, G. A., 1977, Melanocyte stimulatinghormone release inhibiting factor-1 and tardive dyskinesia, Dis. Nerv. Syst. 38: 303–307.Google Scholar
  28. Ezrin-Waters, C., and Seeman, P., 1977, Tolerance to haloperidol catalepsy, Eur J. Pharmacol. 41: 321–327.PubMedCrossRefGoogle Scholar
  29. Fann, W. E., Lake, C. R., Gerber, C. J., and McKenzie, G. M., 1974, Cholinergic suppression of tardive dyskinesia, Psychopharmacologia 37: 101–107.PubMedCrossRefGoogle Scholar
  30. Fann, W. E. Sullivan, J. L. III, Miller, R. D., and McKenzie, G. M., 1975, Deanol in tardive dyskinesia: a preliminary report, Psychopharmacologia 42: 135–137.PubMedCrossRefGoogle Scholar
  31. Fourbye, A., Rasche, P. J., and Peterson, B., 1964, Neurological symptoms in pharmacotherapy of psychoses, Acta Psychiatr. Scand. 40: 10–27.Google Scholar
  32. Fjalland, B., and Moller-Nielsen, I., 1974, Enhancement of methylphenidate-induced stereotypies by repeated administration of neuroleptics, Psychopharmacologia (Berlin) 34: 105–109.CrossRefGoogle Scholar
  33. Gardos, G., Cole, J. O., and LaBrie, R. L., 1977, The assessment of tardive dyskinesia, Arch. Gen. Psychiatry 34: 1206–1212.CrossRefGoogle Scholar
  34. Gardos, G., Granacher, R. P., Cole, J. O., and Sniffin, C., 1979, The effects of papaverine in tardive dyskinesia, Prog. Neuropsychopharmacol. 3: 543–550.CrossRefGoogle Scholar
  35. Garelis, E., and Neff, N. H., 1974, Cyclic adenosine monophosphate: Selective increase in caudate nucleus after administration of L-dopa, Science 183: 532–533.PubMedCrossRefGoogle Scholar
  36. Gerlach, J., 1977, The relationship between parkinsonism and tardive dyskinesia, Am. J. Psychiatry 134: 781–784.PubMedGoogle Scholar
  37. Gerlach, J., Reisby, N., and Randrup, A., 1974, Dopaminergic hypersensitivity and cholinergic hypofunction in the pathophysiology of tardive dyskinesia, Psychopharmacologia 34: 21–35.PubMedCrossRefGoogle Scholar
  38. Gessa, G. L., and Tagliamonte, A., 1975, Effect of methadone and dextromoramide on dopamine metabolism: Comparison with haloperidol and amphetamine, Neuropharmacology 14: 913–920.PubMedCrossRefGoogle Scholar
  39. Gianutsos, G., Drawbaugh, R. B., Hynes, M. D., and Lal, H., 1974, Behavioral evidence for dopaminergic supersensitivity after chronic haloperidol, Life Sci. 14: 887–898.PubMedCrossRefGoogle Scholar
  40. Gnegy, M. E., Uzunov, P., and Costa, E., 1976, Regulations of the dopamine stimulation of striatal adenylate cyclase by an endogenous Ca -binding protein, Proc. Natl. Acad. Sci. USA 73: 3887–3890.PubMedCrossRefGoogle Scholar
  41. Gnegy, M. E. Uzunov, P., and Costa, E., 1977a, Participation of an endogenous Ca+ k-binding protein activator in the development of drug-induced supersensitivity of striatal dopamine receptors, J. Pharmacol. Exp. Ther. 202: 558–564.PubMedGoogle Scholar
  42. Gnegy, M. E., Lucchelli, A., and Costa, E., 1977b, Correlation between drug-induced supersensitivity of dopamine dependent striatal mechanisms and the increase in striatal content of the Ca“ -regulated protein activator of cAMP phosphodiesterase, Naunyn-Schmiedb. Arch. Pharmacol. 301: 121–127.CrossRefGoogle Scholar
  43. Greenberg, R., Whalley, C. E., Jourdikian, F, Mendelson, I. S., and Walter, R., 1976, Peptides readily penetrate the blood brain barrier: Uptake of peptides by synaptosomes is passive, Pharmacol. Biochem. Behay. 5: 151–158.CrossRefGoogle Scholar
  44. Growdon, J. H. Hirsch, M. J. Wurtman, R. J., and Weiner, W., 1977, Oral choline administration to patients with tardive dyskinesia, N. Engl. J. Med. 297: 524–527.Google Scholar
  45. Horn, A. S., and Snyder, S. H., 1971, Chlorpromazine and dopamine: Conformational similarity that correlate with the antischizophrenic activity of phenothiazine drugs, Proc. Natl. Acad. Sci. USA 68: 2325–2328.PubMedCrossRefGoogle Scholar
  46. Huidobro-Toro, J. P. deCarolis, A. S., and Longo, V. G., 1974, Action of two hypothalamic factors (TRH,MIF) and of angiotensin II on the behavioral effects of L-dopa and 5-hydroxytryptophan in mice, Pharmacol. Biochem. Behay. 2: 105–109.Google Scholar
  47. Hunter, R., Earl., C. J., and Janz, D., 1964, A syndrome of abnormal movements and dementia in leucotomized patients treated withh phenothiazines, J. Neurol. Neurosurg. Psychiatry 27: 219–223.Google Scholar
  48. Ionescu, R., Nica, S. U., Oproiu, L., Niturad, A., and Tudoarche, B., 1973, Double blind study in psychopathic behavioral disorders (clozapine and pericyazine), Pharmacopsychiatria 6: 294–299.CrossRefGoogle Scholar
  49. Iversen, L., 1975, Dopamine receptors in the brain: A dopamine sensitive adenylate cyclase models synaptic receptors, illuminating antipsychotic drug action, Science 188: 1084–1089.PubMedCrossRefGoogle Scholar
  50. Janssen, P.A. J., and Allewijn, T. F. M., 1969, The distribution of the butyrophenones, haloperidol, trifluperidol, moperone, and clofluperiol in rats, and its relationships with their neuroleptic activity, Arzneim. Forsch. 19: 199–208.Google Scholar
  51. Kane, J. Wegner, J., Stenzler, S., and Ramsey, P., 1980, The prevalence of the presumed tardive dyskinesia in psychiatric inpatients and outpatients, Psychopharmacology 69: 247–251.PubMedCrossRefGoogle Scholar
  52. Karobath, M., and Leitich, H., 1974, Antipsychotic drugs and dopamine stimulated adenylate cyclase prepared from corpus striatum of rat brain, Proc. Natl. Acad. Sci. USA 71: 2915–2918.PubMedCrossRefGoogle Scholar
  53. Kastin, A. J., and Barbeau, A., 1972, Prelininary clinical studies with L-prolyl-L-leucyl-glycineamide in Parkinson’s disease, Can. Med. Assoc. J. 107: 1079–1081.PubMedGoogle Scholar
  54. Kazamatsuri, H., Chien, C. P., and Cole, J. O., 1972a, Therapeutic approaches to tardive dyskinesia: a review of the literature, Arch. Gen. Psychiatry 27: 491–499.PubMedCrossRefGoogle Scholar
  55. Kazamatsuri, H., Chien, C., and Cole, J. O., 1972b, Treatment of tardive dyskinesia I. Clinical efficacy of a dopamine-depleting agent tetrabenazine, Arch. Gen. Psychiatry 27: 95–99.PubMedCrossRefGoogle Scholar
  56. Kazamatsuri, H., Chien, C., and Cole, J. O., 1972c, Treatment of tardive dyskinesia III. Short-term efficacy of dopamine-blocking agents, haloperidol and thiopropazate, Arch. Gen. Psychiatry 27: 100–103.PubMedCrossRefGoogle Scholar
  57. Kebabian, J. W., and Calne, D. W., 1979, Multiple receptors for dopamine, Nature (London) 277: 93–96.CrossRefGoogle Scholar
  58. Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine sensitive adenylate cyclase in the caudate nucleus of rat brain and its similarity to the “dopamine receptor,” Proc. Natl. Acad. Sci. USA 69: 2145–2149.PubMedCrossRefGoogle Scholar
  59. Klawans, H. L., Jr., and McKendall, R. R., 1971, Observations on the effect of levodopa on tardive lingual-facial-buccal dyskinesia, J. Neurol. Sci. 14: 189–192.PubMedCrossRefGoogle Scholar
  60. Klawans, H. L., and Rubovits, R., 1974a, Effect of cholinergic and anticholinergic agents on tardive dyskinesia, J. Neurol. Neurosurg. Psychiatry 37: 941–947.PubMedCrossRefGoogle Scholar
  61. Klawans, H. L., and Rubovits, R., 1974b, An experimental model of tardive dyskinesia, J. Neural Transm. 33: 235–246.CrossRefGoogle Scholar
  62. LeDouarin, C., Fage, D., and Scatton, B., 1984, Effects of cyclo(Leu-Gly) on neurochemical indices of dopaminergic supersensitivity induced by prolonged haloperidol treatment, Life Sci. 34: 393–399.CrossRefGoogle Scholar
  63. List, S. J., and Seeman, P., 1979, Dopamine agonists reverse the elevated 3H-neuroleptic binding in neuroleptic-pretreated rats, Life. Sci. 24: 1447–1452.PubMedCrossRefGoogle Scholar
  64. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  65. Matthysse, S., 1973, Antipsychotic drug actions: A cue to the neuropathology of schizophenia?, Fed. Proc. 32: 200–204.PubMedGoogle Scholar
  66. Muller, P., and Seeman, P., 1977, Brain neurotransmitter receptors after long term haloperidol: dopamine, acetylcholine, serotonin, alpha-noradrenergic and naloxone receptors, Life Sci. 21: 1751–1758.PubMedCrossRefGoogle Scholar
  67. Nair, R. M. G., Kastin, A. J., and Schally, A. V., 1971, Isolation and structure of hypothalamic MSH release-inhibiting hormone, Biochem. Biophys. Res. Commun. 43: 1376–1381.PubMedCrossRefGoogle Scholar
  68. Owen, F., Cross, A. J. Waddinton, J. L., Poulter, M., Gamble, S. J., and Crow, T. J., 1980, Dopamine mediated behavior and 3H-spiroperone binding to striatal membranes in rats after nine months haloperidol administration, Life Sci. 26: 55–59.PubMedCrossRefGoogle Scholar
  69. Plotnikoff, N. P., Kastin, A. J., Anderson, M. S., and Schally, A. V., 1971, Dopa potentiation by a hypothalamic factor, MSH release-inhibiting hormone (MIF), Life Sci. 10: 1279–1283.CrossRefGoogle Scholar
  70. Rainbow, T. C., Flexner, J. B. Flexner, L. B., Hoffman, P. L., and Walter R., 1979, Distribution survival and biological effects in mice of a behaviorally active enzymatically stable peptides, pharmacokinetics of cyclo(Leu-Gly) and puromycine induced amnesia, Pharmacol. Biochem. Behay. 10: 787–793.CrossRefGoogle Scholar
  71. Redding, T. W., Kastin, A. J., Nair, R. M. G., and Schally, A. V., 1973, Distribution, half-life and excretion of 14C- and 3H-labeled L-prolyl-L-leucyl-glycinamide in the rat, Neuroendocrinology 11: 92–100.PubMedCrossRefGoogle Scholar
  72. Ritzmann, R. F., and Bhargava, H. N., 1980, The effect of cyclo(Leu-Gly) on chemical denervation supersensitivity of dopamine receptors-induced by intracerebroventricular injection of 6-hydorxydopamine in mice, Life Sci. 27: 2075–2080.PubMedCrossRefGoogle Scholar
  73. Rosenblatt, J. E., Shore, D., Neckers, L. M., Perlow, M. J., Freed, W. J., and Wyatt, R. J., 1979, Effects of chronic haloperidol on caudate 3H-spiroperidol binding in lesioned rats, Eur. J. Pharmacol. 60: 387–388.PubMedCrossRefGoogle Scholar
  74. Sayers, A. C., Burki, H. R., Ruch, W., and Asper, H., 1975, Neuroleptic induced hypersensitivity of striatal dopamine receptors in the rat as a model of tardive dyskinesias. Effects of clozapine, haloperidol, loxapine and chlorpromazine, Psychopharmacologia 41: 97–104.PubMedCrossRefGoogle Scholar
  75. Scatton, B., 1977, Differential regional development of tolerance to increase in dopamine turnover upon repeated neuroleptic administration, Eur. J. Pharmacol. 46: 363–369.PubMedCrossRefGoogle Scholar
  76. Schelkunov, E. L., 1967, Adrenergic effect of chronic administration of neuroleptics, Nature (London) 214: 1210–1213.CrossRefGoogle Scholar
  77. Schmidt, W. R., and Jarcho, L. W., 1966, Persistent dyskinesias following phenothiazine therapy, Arch. Neurol. (Chicago) 14: 369–377.CrossRefGoogle Scholar
  78. Seeman, P., and Lee, T., 1975, Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons, Science 188: 1217–1219.PubMedCrossRefGoogle Scholar
  79. Seeman, P., Chau-Wong, M., Tedesco, J., and Wong, K., 1975, Brain receptors for antipsychotic drugs and dopamine: Direct binding assays, Proc. Natl. Acad. Sci. USA 72: 4376–4380.PubMedCrossRefGoogle Scholar
  80. Smith, R. C., Narsimhachari, N., and Davis, J. M., 1978, Increased effect of apomorphine on homovanillic acid in rats terminated from chronic haloperidol, J. Neural Transm. 42: 159–162.PubMedCrossRefGoogle Scholar
  81. Snyder, S. H., Banerjee, S. P., Yamamura, H. I., and Greenberg, D., 1974, Drugs, neurotransmitters and schizophrenia, Science 184: 1243–1253.PubMedCrossRefGoogle Scholar
  82. Stanley, M., and Wilk, S., 1980, Acute and chronic effects of haloperidol and clozapine on dopamine metabolism in two dopamine rich areas of the rat brain, Res. Commun. Psycho!. Psychiat. Behay. 5: 37–47.Google Scholar
  83. Stawarz, R. J., Robinson, S., Sulser, F., and Dingell, J. V., 1974, On the significance of the increase of homovanilic acid (HVA) caused by antipsychotics in the corpus striatum and limbic forebrain, Fed. Proc. 33: 246.Google Scholar
  84. Stille, G., Lauener, H., and Eichenberger, E., 1971, The pharmacology of 8-chloro-1 l-(4-methyll-piperazinyl)-5-H-dibenzo (b,e) (1,4) diazepine (Clozapine), Il Farmaco 26: 603–625.Google Scholar
  85. Tarsy, D., and Baldessarini, R. J., 1973, Pharmacologically induced behavioral supersensitivity to apomorphine, Nature New Biol. 245: 262–263.PubMedGoogle Scholar
  86. Van Rossum, J. M., 1966, The significance of dopamine receptor blockade for the mechanism of neuroleptic drugs, Arch. Int. Pharmacodyn. Ther. 160: 492–494.PubMedGoogle Scholar
  87. Wurtman, R. J., Hirsch, M. J., and Growdon, J. H., 1977, Lecithin consumption elevates serum free choline levels, Lancet 2: 68–69.PubMedCrossRefGoogle Scholar
  88. Yarbrough, G. C., 1975, Supersensitivity of caudate neurons after repeated administration of haloperidol, Eur. J. Pharmacol. 31: 367–369.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Hemendra N. Bhargava
    • 1
  1. 1.Department of Pharmacodynamics, College of PharmacyThe University of Illinois at Chicago, Health Sciences CenterChicagoUSA

Personalised recommendations