Biochemical and Pharmacological Aspects of Movement Disorders in Huntington’s Disease

  • Richard L. Borison
  • Ana Hitri
  • Bruce I. Diamond


The neurochemistry of Huntington’s disease (HD) presents an unusual problem. Since this disorder is progressive and deteriorative, the relative neurochemical balance may be quite different depending on what stage of illness was obtained prior to death and autopsy analysis of the brain. Furthermore, with the significant loss of tissue that occurs with degeneration, the relative concentrations of transmitters, enzymes, and receptors may appear falsely high when expressed per milligram of tissue. Other issues that obscure the neurochemical analysis of HD include the variability of genetic expression (e.g., differences in times of onset of choreas, dementia), which make it unlikely that any two HD brains will necessarily show concordance upon neurochemical analysis. Finally, it is quite likely that brain plasticity may account for homeostatic neurochemical changes in some neurotransmitter systems to compensate for the loss, due to degeneration, of other neurotransmitters and neuroanatomical pathways. Thus, our review of HD neurochemistry may at times seem contradictory, most likely because of one or more of these factors. It is important, however, to remember that HD is not a static illness, and neurochemical analysis at any particular stage of illness may show a wide variability.


Movement Disorder Caudate Nucleus Huntington Disease Globus Pallidus Glutamic Acid Decarboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achar, V. S., Welch, K. M. A., Chabi, E., Bartosh, K., and Meyer, J. S., 1976, Cerebrospinal fluid gama-aminobutyric acid in neurologic disease, Neurology 26: 777–780.PubMedGoogle Scholar
  2. Anden, N. E., Dahlstrom, A., Fuxe, K., Larson, K., Olson, L., and Ungerstedt, U., 1966, Ascending monoamine neurons to the telencephalon and diencephalon, Acta. Physiol. Scand. 67: 313–326.CrossRefGoogle Scholar
  3. Aquilonius, S. M., and Sjostrom, R., 1971, Cholinergic and dopaminergic mechanisms in Huntington’s chorea, Life Sci. 10: 404–414.CrossRefGoogle Scholar
  4. Arregui, A., Bennett, J. P., Jr., Bird, E. D., Yamamura, H. I., Iversen, L. L., and Snyder, S. H., 1977, Huntington’s chorea: Selective depletion of activity of angiotensin converting enzyme in the corpus striatum, Ann. Neurol. 2: 294–298.PubMedCrossRefGoogle Scholar
  5. Arregui, A., Emson, P. C., and Spokes, E. G., 1978, Angiotensin-converting enzyme in substantia nigra: Reduction of activity in Huntington’s disease and after intrastriatal kainic acid in rats, Eur. J. Pharmacol. 52: 121–124.PubMedCrossRefGoogle Scholar
  6. Banna, N. R., and Anderson, E. G., 1968, The effects of 5-hydroxytryptamine antagonists on spinal neuronal activity, J. Pharmacol. Exp. Ther. 162: 319–325.PubMedGoogle Scholar
  7. Beinfeld, M. C., 1983, Cholecystokinin in the central nervous system: A minireview, Neuropeptides 3: 411–427.PubMedCrossRefGoogle Scholar
  8. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F., 1973, Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations, J. Neurol. Sci. 20: 415–455.PubMedCrossRefGoogle Scholar
  9. Bird, E. D., and Iverson, L. L., 1974, Huntington’s chorea: Postmortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia, Brain 97:457–472.PubMedCrossRefGoogle Scholar
  10. Bird, E. D., Mackay, A. V. P., Rayner, C. N., and Iversen, L. L., 1973, Reduced glutamic-acid- decarboxylase activity of postmortem brain in Huntington’s chorea, Lancet 1: 1090–1092.PubMedCrossRefGoogle Scholar
  11. Birkmayer, W., and Hornykiewicz, O., 1962, The L-dihydroxyphenylalanine effect in Parkinson’s syndrome in man: On the pathogenesis and treatment of Parkinson’s akinesis, Arch. Psychiatrie Nervenkr. 203: 560–574.CrossRefGoogle Scholar
  12. Bruyn, G. W., Bots, G. Th. A. M., and Dom, R., 1979, Huntington’s chorea: Current neuropathological status, Adv. Neurol. 23: 83–93.Google Scholar
  13. Buck, S. H., Burks, T. F., Brown, M. R., and Yamamura, H. I., 1981, Reduction in basal ganglia and substantia nigra substance P levels in Huntington’s disease, Brain Res. 209: 464–469.PubMedCrossRefGoogle Scholar
  14. Caraceni, T. A., Calderini, G., Consolazione, A., Riva, E., Algeri, S., Girott, F., Spreafico, R., Banciforti, A., Dall’olio, A., and Morselli, L., 1977, Biochemical aspects of Huntington’s chorea, J. Neurol. Neurosurg. Psychiatry 40: 581–587.PubMedCrossRefGoogle Scholar
  15. Caraceni, T. A., Girotti, F., Giovannini, P., Pederzoli, M., and Parati, E. A., 1980, Effects of dopamine agonist in Huntington disease hyperkinesia, Ital. J. Neurol. Sci. 3: 155–161.Google Scholar
  16. Carter, C. J., 1981, Loss of glutamine synthetase activity in the brain in Huntington’s disease, Lancet 1: 782–783.PubMedCrossRefGoogle Scholar
  17. Chase, T. N., 1972, Biochemical and pharmacologic studies of monoamines in Huntington’s chorea, Adv. Neurol. 22: 533–542.Google Scholar
  18. Coyle, J. T., and Schwarcz, R., 1976, Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea, Nature 263: 244–246.PubMedCrossRefGoogle Scholar
  19. Cross, A., and Rossor, M., 1983, Dopamine D-1 and D-2 receptors in Huntington’s disease, Eur. J. Pharmacol. 88: 223–229.PubMedCrossRefGoogle Scholar
  20. Cunha, L., Oliviera, C. R., Diniz, M., Amaral, R., Concalves, A. F., and Pio-Abreu, J., 1981, Homovanilic acid in Huntington’s disease and Sydenham’s chorea, J. Neurol. Neurosurg. Psychiatry 44 (3): 258–261.PubMedCrossRefGoogle Scholar
  21. Dahlstrom, A., and Fuze, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system I, demonstration of monoamines in the cell bodies of brain stem neurons, Acta. Physiol. Scand. 62 (Suppl.): 231–255.Google Scholar
  22. Dewhurst, W. G., 1968, Methysergide in mania, Nature 219: 506–507.PubMedCrossRefGoogle Scholar
  23. Diamond, B. I., and Borison, R. L., 1982, Regulatory peptides in animal paradigms of neuropsychiatric illness, in: Regulatory Peptides: From Molecular Biology to Function ( E. Costa and M. Trabucchi, eds.), pp. 541–548, Raven Press, New York.Google Scholar
  24. Diamond, B. I., Comaty, J. S., Sudakoff, G. S., Havdala, H. S., Walter, R., and Borison, R. L., 1979, Role of substance P in the striatum, Adv. Neurol. 23: 505–516.Google Scholar
  25. Diamond, B. I., Pasinetti, G., Hitri, A., and Borison, R. L., 1983, CCK and dopamine in the striatum: Implications for parkinsonism, Adv. Neurol. 40: 483–488.Google Scholar
  26. Divac, I., Fonnum, F., and Storm-Mathisen, J., 1977, High affinity uptake of glutamate in terminals of corticostriatal axons, Nature 266: 377–378.PubMedCrossRefGoogle Scholar
  27. Dodd, J., and Kelly, J. S., 1981, The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus, Brain Res. 205: 337–350.PubMedCrossRefGoogle Scholar
  28. Doepfner, W., 1962, Biochemical observations on LSD-25 and diseril, Experientia (Basel) 18: 256–257.CrossRefGoogle Scholar
  29. Dom, R., Malfroid, M., and Baro, R., 1976, Neuropathology of Huntington’s chorea: Studies of the ventrobasal complex of the thalamus, Neurology 26: 64–68.PubMedGoogle Scholar
  30. Durso, R., Tamminga, C. A., Denaro, A., Ruggeri, S., and Chase, T. N., 1983, Plasma and growth hormone response to dopaminergic, GABA-mimetic and cholinergic stimulation in Hunting-ton’s disease, Neurology 33: 1229–1232.PubMedGoogle Scholar
  31. Ehringer, H., and Hornykiewicz, O., 1960, Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system, KIM. Wochenschr. 38: 1236–1239.CrossRefGoogle Scholar
  32. Emson, P. C., 1979, Peptides as neurotransmitter candidates in the CNS, Progr. Neurobiol. 13: 61–116.CrossRefGoogle Scholar
  33. Emson, P. C., Arregui, A., Clement-Jones, V., Sandberg, B. E., and Rossor, M., 1980a, Regional distribution of methionine-enkephalin and substance P-like immunoreactivity in normal human brain and in Huntington’s disease, Brain Res. 199: 147–160.PubMedCrossRefGoogle Scholar
  34. Emson, P. C., Rehfeld, J. F., Langevin, H., and Rossor, M., 1980b, Reduction in cholecystokininlike immunoreactivity in the basal ganglia in Huntington’s disease, Brain Res. 198: 497–500.PubMedCrossRefGoogle Scholar
  35. Enna, S. J., Bennett, J. P., Jr., Bylund, D. B., Synder, S. H., Bird, E. D., and Iversen, L. L., 1976a, Alterations of brain neurotransmitter receptor binding in Huntington’s chorea, Brain Res. 116: 531–537.PubMedCrossRefGoogle Scholar
  36. Enna, S. J., Bird, E. D., Bennett, J. P., Jr., Bylund, D. B., Yamumaura, H. I., and Iversen, L. L., 1976b, Huntington’s chorea: Changes in neurotransmitter receptors in the brain, N. Engl. J. Med. 294: 1305–1309.PubMedCrossRefGoogle Scholar
  37. Enna, S. J., Wood, J. H., and Snyder, S. H., 1977a, y-Aminobutyric acid (GABA) in human cerebrospinal fluid: Radioreceptor assay, J. Neurochem. 28:1121–1124.CrossRefGoogle Scholar
  38. Enna, S. J., Stern, L. Z., Wastek, G. J., and Yamamura, H. I., 1977b, Cerebrospinal fluid yaminobutyric acid variations in neurological disorders, Arch. Neurol. 34: 683–685.PubMedCrossRefGoogle Scholar
  39. Enna, S. J., Stern, L. Z., Wastek, G. J., and Yamamura, H. I., 1977c, Minireview: Neurobiology and pharmacology of Huntington’s disease, Life Sci. 20: 205–212.PubMedCrossRefGoogle Scholar
  40. Freed, W. J., and Michaelis, E. K., 1976, Effects of intraventricular glutamic acid on the acquisition, performance, and extinction of an operant response, and on general activity, Psychopharmacology 50: 293–299.PubMedCrossRefGoogle Scholar
  41. Gale, J. S., Bird, E. D., Spokes, E. G., Iversen, L. L., and Jessell, T., 1978, Human brain substance P: Distribution in controls and Huntington’s chorea, J. Neurochem. 30: 633–634.PubMedCrossRefGoogle Scholar
  42. Glaeser, B. S., Hare, T. A., Vogel, W. H., Olewiler, D. B., and Beasley, B. L., 1975, Low GABA levels in CSF in Huntington’s chorea, N. Engl. J. Med. 292: 1029–1030.PubMedGoogle Scholar
  43. Grove, J., Schecter, P. J., Tell, G., Koch-Weser, J., Sjoerdsma, A., Warter, J. M., Marsecaux, C., and Rumbach, L., 1981, Increased gamma-aminobutyric acid (GABA), homocarnosin and beta-alanine in cerebrospinal fluid of patients treated with gamma-vinyl GABA (4-amino-hex5-enoic acid), Life Sci. 28: 2431–2439.PubMedCrossRefGoogle Scholar
  44. Growdon, J. H., Cohen, E. L., and Wurtman, R. J., 1977, Huntington’s disease: Clinical and chemical effects of choline administration, Ann. Neurol. 1: 418–422.PubMedCrossRefGoogle Scholar
  45. Hays, S. E., and Paul, S. M., 1982, CCK receptors and human neurological disease, Life Sci. 31: 319–322.PubMedCrossRefGoogle Scholar
  46. Hays, S. E., Goodwin, F. K., and Paul, S. M., 1981, Cholecystokinin receptors are decreased in basal ganglia and cerebral cortex of Huntington’s disease, Brain Res. 225: 452–456.PubMedCrossRefGoogle Scholar
  47. Henke, J., 1979, Kainic acid binding in human caudate nucleus: Effect of Huntington’s disease, Neurosci. Lett. 14: 247–251.PubMedCrossRefGoogle Scholar
  48. Hiley, C. R., and Bird, E. D., 1974, Decreased muscarinic receptor concentration in post-mortem brain in Huntington’s chorea, Brain Res. 80: 355–358.PubMedCrossRefGoogle Scholar
  49. Hong, J. S., Yang, H. Y. T., and Costa, E., 1977, On the location of methionine enkephalin neurons in rat striatum, Neuropharmacology 16: 451–453.PubMedCrossRefGoogle Scholar
  50. Hornykiewicz, O., 1976, Neurohumoral interactions and basal ganglia function and dysfunction, in: The Basal Ganglia: Research Publication, Association for Research in Nervous and Mental Disease, Vol. 55 ( M. D. Yahr, ed.), pp. 269–280, Raven Press, New York.Google Scholar
  51. Hunt, J. R., 1917, Progressive atrophy of the globus pallidus (primary atrophy of the pallidal system), Brain 40: 58–76.CrossRefGoogle Scholar
  52. Innis, R. B., Correa, F. M., Uhl, G. R., Schneider, B., and Snyder, S. H., 1979, Cholecystokinin octopeptide-like immunoreactivity: Histochemical localization in rat brain, Proc. Natl. Acod. Sci. U.S.A. 76: 521–525.CrossRefGoogle Scholar
  53. Iversen, L. L., Bird, E., Spokes, E., Nicholson, S. H., and Suckling, C. J., 1979, Agonist specificity of GABA binding sites in human brain and GABA in Huntington’s disease and schizophrenia, Munksgoard 11: 179–180.Google Scholar
  54. Jessell, T. M., Emson, P. C., Paxinos, G., and Cuello, A. C., 1978, Topographic projections of substance P and GABA pathways in the striato-and pallido-nigral system: A biochemical and immunohistochemical study, Brain Res. 152: 487–498.PubMedCrossRefGoogle Scholar
  55. Johanson, B., and Ross, B. E., 1974, 5-Hydroxyindolacetic acid and homovanillic acid in cerebrospinal fluid of patients with neurological diseases, Eur. Neurol. 11:37–45.CrossRefGoogle Scholar
  56. Kim, J. S., Komhuber, H. H., Holzmuller, B., Schmid-Burgk, W., Mergner, T., and Krzepinski, G., 1980, Reduction of cerebrospinal fluid glutamic acid in Huntington’s chorea and in schizophrenic patients, Arch. Psychiatr. Nervenkr. 228: 7–10.PubMedCrossRefGoogle Scholar
  57. Klawans, H. L., and Rubovits, R., 1972, Central cholinergic—anticholinergic antagonism in Huntington’s chorea, Neurology 22: 107–116.PubMedGoogle Scholar
  58. Klawans, H. L., and Weiner, W. J., 1974, The effect of d-amphetamine on choreiform movement disorders, Neurology 24: 312–318.PubMedGoogle Scholar
  59. Klawans, H. L., and Weiner, W. J., 1976, The pharmacology of choreatic movement disorders, Prog. Neurobiol. 6: 49–80.PubMedCrossRefGoogle Scholar
  60. Klawans, H. L., Rubovits, R., Ringel, S. P., and Weiner, W. J., 1972, Observations on the use of methysergide in Huntington’s chorea, Neurology 22: 930–933.Google Scholar
  61. Kremzner, L. T., Berl, S., Stellar, S., and Cote, L. J., 1979, Amino acids, peptides, and polyamines in cortical biopsies and ventricular fluid in patients with Huntington’s disease, Adv. Neurol. 23: 537–546.Google Scholar
  62. Lee, D. K., Markham, C. H., and Clark, W. G., 1968, Serotonin (5-hydroxytryptamine) metabolism in Huntington’s chorea, Life Sci. 7: 707–712.CrossRefGoogle Scholar
  63. Lenman, J A, Ferguson, I. T., Fleming, A. M., Herzberg, L., Robb, J. E., and Turnbull, M. J., 1976, Sodium valproate in chorea, Br. Med. J. 2: 1107–1108.PubMedCrossRefGoogle Scholar
  64. Lloyd, K. G., and Davidson, L., 1979, (3H) GABA binding in brains from Huntington’s chorea patients: Altered regulation by phospholipids? Science 205:1147–1149.PubMedCrossRefGoogle Scholar
  65. Lloyd, K. G., Dreksler, S., and Bird, E. D., 1977, Alterations in 3H-GABA binding in Huntington’s chorea, Life Sci. 21: 747–753.PubMedCrossRefGoogle Scholar
  66. Manberg, P. J., Nemeroff, C. B., Iverson, L. L., Rossor, M. N., Kizer, J. S., and Prange, A. J., 1982, Human brain distribution of neurotensin in normals, schizophrenics, and Huntington’s choreics, Ann. NY Acad. Sci. 400: 354–365.PubMedCrossRefGoogle Scholar
  67. Mangano, R. M., and Schwarcz, R., 1980, Glutamate uptake into human platelets, characterization and observations in Huntington’s disease, Soc. Neurosci. Abstr. 6: 508.Google Scholar
  68. Mann, J. J., Stanley, M., Gershon, S., and Rossor, M., 1980, Mental symptoms in Huntington’s disease and a possible primary aminergic neuron lesion, Science 210: 1369–1371.PubMedCrossRefGoogle Scholar
  69. Manyam, N. V., Hare, T. A., Katz, L., and Glaeser, B. S., 1978, Huntington’s disease. Cerebrospinal fluid GABA levels in at-risk individuals, Arch. Neurol. 35: 728–730.PubMedCrossRefGoogle Scholar
  70. Manyam, B. V., Katz, L., Hare, T. A., Kaniefski, K., and Tremblay, R. D., 1981, Isoniazidinduced elevation of CSF GABA levels and effects on chorea in Huntington’s disease, Ann. Neurol. 10: 35–37.PubMedCrossRefGoogle Scholar
  71. McGeer, E. G., and McGeer, P. L., 1976, Duplication of biochemical changes of Huntington’s horea by intrastriatal injections of glutamic and kainic acids, Nature 263: 517–519.PubMedCrossRefGoogle Scholar
  72. McGeer, P. L., McGeer, E. G., and Fibiger, H. C., 1973, Choline acetylase and glutamic acid ecarboxylase in Huntington’s chorea: A preliminary study, Neurology 23: 912–917.PubMedGoogle Scholar
  73. McLennan, H., and York, D. H., 1969, The action of dopamine on neurons of caudate nucleus, J. Physiol. 189: 393–402.Google Scholar
  74. Melamed, E., Hefti, F., and Bird, E. D., 1982, Huntington chorea is not associated with hyperactivity of nigrostriatal dopaminergic neurons: Studies in postmortem tissues and in rats with kainic acid lesions, Neurology 32: 640–644.PubMedGoogle Scholar
  75. Nemeroff, C. B., Youngblood, W. W., Manberg, P. J., Prange, A. J., and Kizer, J. S., 1983, Regional brain concentrations of neuropeptides in Huntington’s chorea and schizophrenia, Science 221: 972–975.PubMedCrossRefGoogle Scholar
  76. Nutt, J. G., Rosin, A., and Chase, T. N., 1978, Treatment of Huntington disease with a cholinergic agonist, Neurology 28: 1061–1064.PubMedGoogle Scholar
  77. Olney, J. W., and deGubareff, T., 1978, Glutamate neurotoxicity and Huntington’s chorea, Nature 271: 557–559.PubMedCrossRefGoogle Scholar
  78. Olney, J. W., Sharpe, L. G., and Feigin, R. D., 1972, Glutamate-induced brain damage in infant primates, J. Neuropathol. Exp. Neurol. 31: 464–488.PubMedCrossRefGoogle Scholar
  79. Olsen, R. W., Van Ness, P. C., and Tourtellotte, W. W., 1979, Gamma-aminobutyric acid receptor binding curves for human brain regions: Comparison of Huntington’s disease and normal, Adv. Neurol. 23: 697–704.Google Scholar
  80. Penny, J. B., and Young, A. B., 1982, Quantitative autoradiography of neurotransmitter receptors in Huntington’s disease, Neurology 32: 1391–1395.Google Scholar
  81. Perry, T. L., Hansen, S., Diamond, S., and Stedman, D., 1969, Plasma-aminoacid levels in Huntington’s chorea, Lancet 1: 806–808.PubMedCrossRefGoogle Scholar
  82. Perry, T. L., Hansen, S., and Lesk, D., 1972, Plasma amino acid levels in children of patients with Huntington’s chorea, Neurology 22: 68–70.PubMedGoogle Scholar
  83. Perry, T. L., Hansen, S., and Kloster, M., 1973, Huntington’s chorea, deficiency of Y-aminobutyric acid in brain, N. Engl. J. Med. 288: 337–342.PubMedCrossRefGoogle Scholar
  84. Perry, T. L., Hansen, S., and Kennedy, J., 1975, CSF amino acids and plasma-CSF amino acid ratios in adults, J. Neurochem. 24: 587–589.PubMedCrossRefGoogle Scholar
  85. Perry, T. L., Wright, J. M., Hansen, S., and MacLeod, P. M., 1979, Isoniazid therapy of Huntington disease, Neurology 29: 370–375.PubMedGoogle Scholar
  86. Perry, T. L., Hansen, S., Wall, R. A., and Gauthier, S. G., 1982, Human CSF GABA concentrations: revised downward for controls, but not decreased in Huntington’s chorea, J. Neurochem. 38: 766–773.PubMedCrossRefGoogle Scholar
  87. Phillipson, O. T., and Bird, E. D., 1977, Plasma glucose, nonesterified fatty acids and amino acids in Huntington’s chorea, Clin. Sci. Mol. Med. 52: 311–318.PubMedGoogle Scholar
  88. Pinget, M., Straus, E., and Yalow, R. S., 1979, Release of cholecystokinin peptides from a synaptosome-enriched fraction of rat cerebral cortex, Life Sci. 25: 339–342.PubMedCrossRefGoogle Scholar
  89. Potashner, S. J., 1978, Baclofen: Effects of amino acid release, Can. J. Physiol. Pharmacol. 56: 150–154.PubMedCrossRefGoogle Scholar
  90. Rehfeld, J. F., 1978, Immunochemical studies on cholecystokinin II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog, J. Biol. Chem. 253: 4022–4030.PubMedGoogle Scholar
  91. Reibling, A., Reyes, P., and Jameson, H. D., 1975, Dimethylaminoethanol ineffective in Huntington’s disease, N. Engl. J. Med. 293: 724.PubMedGoogle Scholar
  92. Reisine, T. D., Fields, J. Z., Bird, E. D., Spokes, E., and Yamamura, H. I., 1978, Characterization of brain dopaminergic receptors in Huntington’s disease, Comm. Psychopharmacol. 2 (2): 7984.Google Scholar
  93. Ringel, S. P., Weiner, W. J., Rubovits, R., and Klawans, H. L., 1973, Methysergide in Huntington’s chorea, in: Advances in Neurology, Vol. 1, pp. 769–776, Raven Press, New York.Google Scholar
  94. Roberts, P. J., 1974, Glutamate receptors in the rat central nervous system, Nature 252: 399–401.PubMedCrossRefGoogle Scholar
  95. Roberts, P. J., and Anderson, S. D., 1979, Stimulatory effect of L-glutamate and related amino acids on [3H]dopamine release from rat striatum: An in vitro model for glutamate actions, J. Neurochem. 32: 1539–1545.CrossRefGoogle Scholar
  96. Ruck, A., Kramer, S., Metz, J., and Brennan, M. J., 1980, Methyltetrahydrofolate is a potent and selective agonist for kainic acid receptors, Nature 287: 852–853.PubMedCrossRefGoogle Scholar
  97. Saito, A., Sankaran, H., Goldfine, I. D., and Williams, J. A., 1980, Cholecystokinin receptors in the brain; Characterization and distribution, Science 208: 1155–1156.PubMedCrossRefGoogle Scholar
  98. Sanberg, P. R., and Johnston, G. A., 1981, Glutamate and Huntington’s disease, Med. J. Aust. 2: 460–465.PubMedGoogle Scholar
  99. Schwarcz, R., Bennett, P. J., Jr., and Coyle, J. T., Jr., 1977, Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesion: Correlations with Huntington’s disease, J. Neurochem. 28: 867–869.PubMedCrossRefGoogle Scholar
  100. Severs, W. B., and Daniels-Severs, A. E., 1973, Effects of angiotensin on the central nervous system, Pharmacol. Rev. 25: 415–423.PubMedGoogle Scholar
  101. Shoemaker, H., Morelli, M., Deshmukh, P., and Yamamura, H. I., 1982, 3H-RO5–4864 benzodiazepine binding in the kainate lesioned striatum and Huntington’s diseased basal ganglia, Brain Res. 248:396–401.CrossRefGoogle Scholar
  102. Shoulson, I., Chase, T. N., Roberts, E., and VanBalgooy, J. N. A., 1975, Huntington’s disease. Treatment with imidazole-4-acetic acid, N. Engl. J. Med. 293: 504–505.PubMedGoogle Scholar
  103. Shoulson, I., Katrizinel, R., and Chase, T. N., 1976, Huntington’s disease: Treatment with dipropylacetic acid and gamma-aminobutyric acid, Neurology 26: 61–63.PubMedGoogle Scholar
  104. Shoulson, I., Goldblatt, D., Charlton, M., and Joynt, R. J., 1978, Huntington’s disease: Treatment with musciomol, a GABA-mimetic drug, Ann. Neurol. 4: 279–284.PubMedCrossRefGoogle Scholar
  105. Siegmund, R., Schmeisser, G., and Heidrich, R., 1982, Therapeutic experiences in treatment of hyperkinesias with the neuroleptic pimozide, Psychiatr. Neurol. Med. Psycho. (Leipz) 34 (5): 307–308.Google Scholar
  106. Skerritt, J. H., and Johnston, G. A. R., 1981, Postnatal development of GABA and kainate binding sites and their endogenous inhibitors in rat brain, Aust. Neurosci. Proc. 1: 65C.Google Scholar
  107. Soffer, R. L., 1976, Angiotensin-converting enzyme and the regulation of vaso-active peptides, Ann. Rev. Biochem. 45: 73–94.PubMedCrossRefGoogle Scholar
  108. Spokes, E. G. S., 1979, Dopamine in Huntington’s disease. A study of post-mortem brain tissue, Adv. Neurol. 23: 481–493.Google Scholar
  109. Spokes, E. G. S., 1980, Neurochemical alterations in Huntington’s chorea: A study of post-mortem brain tissue, Brain 103: 179–210.PubMedCrossRefGoogle Scholar
  110. Stahl, W. L., and Swanson, P. D., 1974, Biochemical abnormalities in Huntington’s chorea brains, Neurology 24: 813–819.PubMedGoogle Scholar
  111. Symington, G. R., Leonard, D. P., Shannon, P. J., and Vajda, F. J. E., 1978, Sodium valproate in Huntington’s disease, Am. J. Psychiatry 135: 352–354.PubMedGoogle Scholar
  112. Tarsy, D., Leopold, N., and Sax, D. S., 1974, Physostigmine in choreiform movement disorders, Neurology 24: 28–33.PubMedGoogle Scholar
  113. Tell, G., Bohlen, P., Schechter, P. J., Koch-Weser, J., Agid, Y., Bonnet, A. M., Coquillat, G., Chazot, G., and Fischer, C., 1981, Treatment of Huntington disease with y-acetylenic GABA, an irreversible inhibitor of GABA-transaminase: increased CSF GABA and homocarnosine without clinical amelioration, Neurology 31: 207–211.PubMedGoogle Scholar
  114. Toglia, J. U., McGlamery, M., and Sambandham, R. R., 1978, Tetrabenazine in the treatment of Huntington’s chorea and other hyperkinetic movement disorders, J. Clin. Psychiatry 39 (1): 8187.Google Scholar
  115. Urquhart, N., Perry, T. L., Hansen, S., and Kennedy, J., 1975, GABA content and glutamic acid decarboxylase activity in brain of Huntington’s chorea patients and control subjects, J. Neurochem. 24: 1071–1075.PubMedCrossRefGoogle Scholar
  116. Van Ness, P. C., Watkins, A. E., Bergman, M. O., Tourtellotte, W. W., and Olsen, R. W., 1982, Aminobutyric acid receptors in normal human brain and Huntington disease, Neurology 32: 63–68.PubMedGoogle Scholar
  117. Waddington, J. L., and Cross, A. J., 1980, Characterization of denervation supersentitivity in the striatonigral GABA pathway of the kainic acid lesioned rat and in Huntington’s disease, Brain Res. Bull. 5 (Suppl. 2): 825–828.CrossRefGoogle Scholar
  118. Walker, J. E., Hoehn, M., Sears, E., and Lewis, J., 1973, Dimethyl aminoethanol in Huntington’s chorea, Lancet 1: 1512–1513.PubMedCrossRefGoogle Scholar
  119. Walker, R. J., Kemp, J. A. Yajima, H., Kitagawa, K., and Woodruff, G. N., 1976, The action of substance P on mesencephalic reticular and substantia nigral neurones of the rat, Experientia 32: 214–215.Google Scholar
  120. Wastek, G. J., and Yamamura, H. I., 1978, Biochemical characterization of the muscarinic cholinergic receptor in human brain: Alterations in Huntington’s disease, Mol. Pharm. 14: 768–780.Google Scholar
  121. Wastek, G. J., Stern, L. Z., Johnson, P. C., and Yamamura, H. I., 1976, Huntington’s disease: Regional alteration in muscarinic cholinergic receptor binding in human brain, Life Sci. 19: 1033–1039.PubMedCrossRefGoogle Scholar
  122. Watt, J. A., and Cunningham, W. L., 1978, Plasma amino acid levels in Huntington’s chorea, Br. J. Psychiatry 132: 394–397.PubMedCrossRefGoogle Scholar
  123. Weiner, W. J., Goetz, C., and Klawans, H. L., 1973, Serotonergic and antiserotonergic influences on apomorphine induced stereotyped behavior, Acta Pharmacol. Toxicol. 36: 155–160.CrossRefGoogle Scholar
  124. Weiner, W. J., Hitri, A., Caryey, P., Koller, W. C., Nausieda, P., and Klawans, H. L., 1975, 3H dopamine binding studies in guinea pig striatal membrane suggesting two distinct dopamine receptor sites, Adv. Neurol. 23:687–695.Google Scholar
  125. Welch, K. M. A., Chabi, E., Achar, V. S., Bartosh, K., and Meyer, J. S., 1975, GABA in human CSF: The significance of measurement in neurological disease, 5th Annual Meeting of the Society for Neuroscience, Washington D. C. Abstract No. 502.Google Scholar
  126. Wu, J. Y., Bird, E. D., Chen, M. S., and Huang, W. M., 1978, Studies of neuro-transmitter enzymes in Huntington’s chorea, Adv. Neurol. 23: 527–536.Google Scholar
  127. Yang, H. Y. T., and Neff, N. H., 1972, Distribution and properties of angiotensin converting enzyme of rat brain, J. Neurochem. 19: 2443–2450.PubMedCrossRefGoogle Scholar
  128. Yates, C. M., Magill, B. E., Davidson, D., Murray, L. G., Wilson, H., and Pullar, I. A., 1973, Lysosomal enzymes amino acids and acid metabolites of amines in Huntington’s chorea, Clin. Chem. Acta 44: 139–145.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Richard L. Borison
    • 1
  • Ana Hitri
    • 1
  • Bruce I. Diamond
    • 1
  1. 1.Department of PsychiatryDowntown Veterans Administration Medical Center, and Medical College of GeorgiaAugustaUSA

Personalised recommendations