Phagocytosis of Inert Particles: A Comparative Study in Insects and Marine Crustaceans

  • M. Brehelin
  • J. M. Arcier
Part of the Comparative Pathobiology book series (CPATH, volume 8)


As in mammals or other vertebrates, invertebrates are able to recognize and to segregate or eliminate foreign bodies that are introduced into the hemocoel or into tissues. Relative to microorganisms such as bacteria or viruses, some are recognized as foreign bodies and are discarded while others can develop in the invertebrate’s tissues: the latter are usually pathogens or commensals. How insects or other arthropods recognize and engulf foreign particles present in their bodies is poorly understood. Although some studies have shown that molecules such as agglutinins exist in the blood of insects (see Lackie, 1981 for review), the role of these substances in vivo in recognition and engulfment by phagocytes is uncertain. It is not clear if free macrophages are attracted by the foreign bodies or if the initial contact is established at random.


Digestive Gland Phagocytic Cell Reticular Cell Inert Particle Latex Bead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauchau, A. G. (1981). Crustaceans. In “Invertebrate Blood Cells” ( N. A. Ratcliffe and A. F. Rowley, eds.), pp. 385–420. Academic Press, London.Google Scholar
  2. Brehélin, M. (1977). Etude morphologique et fonctionnelle des hémocytes d’Insectes. Thèse d’Etat, Strasbourg. No. 1065.Google Scholar
  3. Brehélin, M., Zachary, D., Hoffmann, J. A., Matz, G., and Porte, A. (1975). Encapsulation of implanted foreign bodies by hemocytes in Locusta migratoria and Melolontha melolontha. Cell. Tiss. Res., 160, 283–289.Google Scholar
  4. Brehélin, M., Zachary, D., and Hoffmann, J. A. (1978). A comparative ultrastructural study of blood cells from nine insect species. Cell. Tiss. Res., 195, 45–57.CrossRefGoogle Scholar
  5. Brehélin, M. and Hoffmann, J. A. (1980). Phagocytosis of inert particles in Locusta migratoria and Galleria mellonella: study of ultrastructure and clearance. J. Insect Physiol., 26, 103–111.CrossRefGoogle Scholar
  6. Brooks, C. and Kreier, J. P. (1978). Role of the surface coat in in vitro attachment and phagocytosis of Plasmodium berghei by peritoneal macrophages. Infect. Immun., 20, 827–835.PubMedGoogle Scholar
  7. Crossley, A. C. (1972). The ultrastructure and function of pericardial cells and other nephrocytes in an insect: Calliphora erythrocephala. Tissue and Cell, 4, 529–560.CrossRefGoogle Scholar
  8. Crossley, A. C. (1983). Nephrocytes and pericardial cells. In “Comprehensive Insect Physiology, Biochemistry and Pharmacology” ( G. A. Kerkut and L. I. Gilbert, eds.), ( In Press). Pergamon Press, London.Google Scholar
  9. Cuénot, L. (1896). Etudes physiologiques sur les Orthoptères. Arch. Biol., 14, 293–341.Google Scholar
  10. Cuénot, L. (1905). L’organe phagocytaire des Crustacés Decapodes. Arch. Zool. Exp. Gen., 4, 1–16.Google Scholar
  11. Fontaine, C. T. and Lightner, D. V. (1974). Observations on the process of phagocytosis and elimination of carmine particles injected into the abdominal musculature of the white shrimp, Penaeus setiferus. J. Invert. Pathol., 24, 141–148.CrossRefGoogle Scholar
  12. Hoffmann, J. A., Porte, A., and Joly, P. (1968a). Présence d’un tissu hématopoiétique au niveau du diaphragme dorsal Locusta migratoria (Orthoptére). C. R. Acad. Sci., 266, 1882–1883.Google Scholar
  13. Hoffmann, J. A., Stoeckel, M. E., Porte, A., and Joly, P. (1968b). Ultrastructure des hémocytes de Locusta migratoria (Orthoptère). C. R. Acad. Sci., 266, 503–505.Google Scholar
  14. Johnson, P. T. (1980). “Histology of the Blue Crab, Callinectes sapidus: A Model for the Decapoda.” Prager, New York.Google Scholar
  15. Lackie, A. M. (1981). The specificity of the serum agglutinins of Periplaneta americana and Scistocerca gregaria and its relationship to the insects’ immune response. J. Insect Physiol., 27, 139–143.CrossRefGoogle Scholar
  16. Lackie, A. M. (1983). Effect of substratum wettability and charge on adhesion in vitro by insect haemocytes. J. Cell Sci., 181–190.Google Scholar
  17. Martoja, R. and Martoja, M. (1967). “Initiation aux Techniques de l’Histologie Animale.” Masson et Cie, Paris.Google Scholar
  18. Rowley, A. F. and Ratcliffe, N. A. (1976). The granular cells of Galleria mellonella during clotting and phagocytic reactions in vitro. Tissue Cell, 8, 437–446.CrossRefGoogle Scholar
  19. Smith, V. J. and Ratcliffe, N. A. (1978). Host defense reactions of the shore crab Carcinus maenas (L), in vitro. J. Mar. Biol. Assoc. U.K., 58, 367–379.CrossRefGoogle Scholar
  20. Smith, V. J. and Ratcliffe, N. A. (1980). Cellular defense of the shore crab, Carcinus maenas: In vivo hemocytic and histopathological responses to injected bacteria. J. Invert. Pathol., 35, 65–74.CrossRefGoogle Scholar
  21. Vinson, S. B. (1974). The role of the foreign surface and female parasitoid secretions on the immune response of an insect. Parasitology, 68, 27–33.CrossRefGoogle Scholar
  22. Zachary, D., Hoffmann, D., Hoffmann, J., and Porte, A. (1981). Role of the reticulohemopoietic tissue of Locusta migratoria in the process of immunisation against Bacillus thuringiensis. Arch. Zool. Exp. Gen., 122, 55–63.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Brehelin
    • 1
  • J. M. Arcier
    • 2
  1. 1.Laboratoire de Pathologie ComparéeEquipe de Recherches en Pathologie des Animaux Marins U.S.T.L.Montpellier CedexFrance
  2. 2.Laboratoire de Physiologie des InvertébresEquipe de Recherches en Pathologie des Animaux Marins U.S.T.L.Montpellier CedexFrance

Personalised recommendations