Genetic Control of Schistosomiasis: A Mathematical Model

  • Madeleine Fletcher
Part of the Comparative Pathobiology book series (CPATH, volume 8)


Genetic manipulation of the intermediate host snails of human-infecting schistosomes has recently attracted interest as a potential method for control of schistosomiasis (Richards, 1970; Woodruff, 1978, 1985). Here I develop a simple mathematical model to illustrate the principles underlying this form of genetic control and to serve as a springboard for a discussion of the effectiveness of this approach.


Genetic Control Resistance Allele Schistosoma Mansoni Snail Infection Snail Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. M. (1978). Population dynamics of snail infection by miracidia. Parasitology, 77, 201–224.PubMedCrossRefGoogle Scholar
  2. Anderson, R. M. and May, R. M. (1979). Prevalence of schistosome infections within molluscan populations: observed patterns and theoretical predictions. Parasitology, 79, 63–94.PubMedCrossRefGoogle Scholar
  3. Barbour, A. D. (1979). Macdonald’s model and the transmission of bilharzia. Trans. R. Soc. Trop. Med. Hyg., 72, 6–15.CrossRefGoogle Scholar
  4. Barbour, A. D. (1982). Schistosomiasis. In “Population Dynamics of Infectious Diseases” ( Anderson, R. M., ed.). Chapman and Hall, London. 180–208 p.Google Scholar
  5. Basch, P. F. (1975). An interpretation of snail-trematode infection rates: specificity based on concordance of compatible phenotypes. Int. J. Parasitol., 5, 449–452.PubMedCrossRefGoogle Scholar
  6. Chernin, E. (1970). Behavioral responses of miracidia of Schistosoma mansoni and other trematodes to substance emitted by snails. J. Parasitol., 56, 287–296.PubMedCrossRefGoogle Scholar
  7. Cohen, J. E. (1977). Mathematical models of schistosomiasis. Annu. Rev. Ecol. Syst., 8, 209–233.CrossRefGoogle Scholar
  8. Day, P. R. (1974). Genetics of Host-Parasite Interactions. W. H. Freeman and Co., San Francisco.Google Scholar
  9. Falconer, D. A. (1960). Introduction to Quantitative Genetics. The Ronald Press Company, New York.Google Scholar
  10. Faust, E. C. and Hoffman, W. A. (1934). Studies on Schistosomiasis mansoni in Puerto Rico. III. Biological studies. 1. The extra-mammalian phases of the life cycle. J. Public Health Trop. Med., 10, 1–47.Google Scholar
  11. Fine, P.E.M., rapporteur. (1976). Mathematical Models of Schistosomiasis. Proceedings Workshop Bellagio, Italy, 1–14 May 1976. Edna McConnell Clark Foundation, New York. 58 p.Google Scholar
  12. Gordon, R. M., Davey, T. H., and Peaston, H. 1934. The transmission of human bilharziasis in Sierra Leone, with an account of the life cycle of the schistosomes concerned, Schistosoma mansoni and Schistosoma haematobium. Ann. Trop. Med. Parasitol., 28, 323–418.Google Scholar
  13. Hairston, N. (1973). The dynamics of transmission. In “Epidemiology and Control of Schistosomiasis (Bilharziasis)(Edited by Ansari, N.), Karger, Basel. 250–336 p.Google Scholar
  14. Jordan, P. and Webbe, G. (1969). Human Schistosomiasis. C. C. Thomas, Springfield.Google Scholar
  15. Laracuente, A., Brown, R. A., and Jobin, W. (1979). Comparison of four species of snails as potential decoys to intercept Schistosome miracidia. Am. J. Trop. Med. Hyg., 28, 99–105.Google Scholar
  16. Macdonald, G. (1965). The dynamics of helminth infection, with special reference to schistosomes. Trans. R. Soc. Trop. Med., 59, 489–506.CrossRefGoogle Scholar
  17. May, R. M. and Anderson, R. M. (1979). Population biology of infectious diseases: Part II. Nature, 280, 455–461.PubMedCrossRefGoogle Scholar
  18. Meuleman, E. A. (1972). Host-parasite interrelationships between the freshwater pulmonate Biomphalaria pfeifferi and the trematode Schistosoma mansoni. Neth. J. Zool., 22, 355–427.CrossRefGoogle Scholar
  19. Michelson, E. H. and Dubois, L. (1978). Susceptibility of Bahian populations of Biomphalaria glabrata to an allopatric strain of Schistosoma mansoni. Am. J. Trop. Med. Hyg., 27, 782–786.Google Scholar
  20. Minchella, D. J. and Loverde, P. T. (1983). Laboratory comparison of the relative success of Biomphalaria glabrata stocks which are susceptible and insusceptible to infection with Schistosoma mansoni. Parasitology, 86, 335–344.Google Scholar
  21. Mulvey, M. and Vrijenhoek, R. C. (1981). Multiple paternity in the hermaphoroditic snail Biomphalaria obstructa. J. Hered., 72, 308–312.Google Scholar
  22. Mulvey, M. and Vrijenhoek, R. C. (1982). Population structure in Biomphalaria glabrata: examination of a hypothesis for the patchy distribution of susceptibility to schistosomes. Am. J. Trop. Med. Hyg., 31, 1195–1200.PubMedGoogle Scholar
  23. Newton, W. L. (1953). The inheritance of susceptibility to infection with Schistosoma mansoni in Australorbis gZabratus. Exp. Parasitol., 2, 242–257.CrossRefGoogle Scholar
  24. Pal, R. and Lachance, L. E. (1974). The operational feasibility of genetic methods for control of insect vectors of medical and veterinary importance. Annu. Rev. Entomol., 19, 269–291.PubMedCrossRefGoogle Scholar
  25. Pal, R. and Whitten, M. (1974). The Use of Genetics in Insect Control. Elsevier/North Holland, Amsterdam.Google Scholar
  26. Paperna, I. (1968). Studies on the transmission of schistosomiasis in Ghana. II. The infection rate of snails at transmission sites. Ghana Medical J., 7, 63–70.Google Scholar
  27. Paraense, W. L. (1955). Self-and cross-fertilization in Australorbis glabratus. Mem. Inst. Oswaldo Cruz, 53, 285–291.Google Scholar
  28. Persigan, T. P., Farooq, M., Hairston, N. G., Jauregui, J. J., Garcia, E. G., Santos, A. T., Santos, B. C., and Besa, A. A. (1958). Studies on Schistosoma japonicum infection in the Philippines. 2. The molluscan host. BUZZ. WHO, 18, 481–578.Google Scholar
  29. Richards, C. S. (1970). Genetics of a molluscan vector of schistosomiasis. Nature, 227, 806–810.PubMedCrossRefGoogle Scholar
  30. Richards, C. S. (1975a). Genetic factors in susceptibility of BiomphaZaria glabrata for different strains of Schistosoma mansoni. Parasitology, 70, 231–241.PubMedCrossRefGoogle Scholar
  31. Richards, C. S. (1975b). Genetic studies on variation in infectivity of Schistosoma mansoni. J. ParasitoZ., 61, 233–236.CrossRefGoogle Scholar
  32. Ritchie, L. S., Berrios-Duran, L. A., and Deweese, R. (1963). Biological potentials of Australorbis glabrata: growth and maturation. Am. J. Trop. Med. Hyg., 12, 264–268.PubMedGoogle Scholar
  33. Rosenfield, P. L., Smith, R. A., and Wolman, M. G. (1977). Development and verification of a schistosomiasis transmission model. Am. J. Trop. Med. Hyg., 26, 505–516.PubMedGoogle Scholar
  34. Rowan, W. B. (1965). The ecology of schistosome transmission foci. Bull. WHO, 33, 63–71.PubMedGoogle Scholar
  35. Schad, G. A. and Rozeboom, L. E. (1976). Integrated control of helminths in human populations. Annu. Rev. Ecol. Syst., 7, 393–420.CrossRefGoogle Scholar
  36. Scott, J. A. (1940). Schistosomiasis in irrigated mountain valleys of Venezuela. Am. J. Hyg., 21, 1–15.Google Scholar
  37. Slobodkin, L. B. (1961). Growth and Regulation of Animal Populations. Holt, Rinehart, and Winston, New York.Google Scholar
  38. Sturrock, B. M. (1961). The influence of infection withSchistosoma mansoni on the growth rate and reproduction of Biomphalaria pfeifferi. Ann. Trop. Med. Parasitol.,60, 187–197.Google Scholar
  39. Sturrock, B. M. (1961). The influence of infection withSchistosoma mansoni on the growth rate and reproduction of Biomphalaria pfeifferi. Ann. Trop. Med. Parasitol.,60, 187–197.Google Scholar
  40. Sturrock, R. F. (1973). Field studies on the transmission of Schistosoma mansoni and on the bionomics of its intermediate host, Biomphalaria glabrata, on St. Lucia, West Indies. Int. J. Parasitol., 3, 175–194.PubMedCrossRefGoogle Scholar
  41. Sturrock, R. F., Karamsadkar, S. J., and Ouma, J. (1979). Schistosome infection rates in field snails: Schistosoma mansoni in Biomphalaria pfeifferi from Kenya. Ann. Trop. Med. Parasitol., 73, 369–375.PubMedGoogle Scholar
  42. Theron, A., Pointier, J. P., and Combes, C. (1978). An ecological approach to the problem of the responsibility of men and rats in the workings of a transmission site of Schistosoma mansoni in Guadeloupe (West Indies). Ann. Parasitol. Hum. Comp., 53, 223–234. (In French).PubMedGoogle Scholar
  43. Ukolí, F.M.A. and Asumu, D. I. (1979). Freshwater snails of the proposed federal capital territory in Nigeria. Niger. J. Nat. Sci., 1, 47–56.Google Scholar
  44. Upatham, E. S. (1976). Field studies on the bionomics of the free-living stages of St. Lucian Schistosoma mansoni. Int. J. Parasitol., 6, 239–245.CrossRefGoogle Scholar
  45. Wagoner, D. E., McDonald, I. C., and Childress, D. (’1974). The present status of genetic control mechanisms in the house fly, Musca domestica L. In “The Use of Genetics in Insect Control” (Edited by Pal, R. and Whitten, M.), Elsevier/North Holland, Amsterdam. 193–197 p.Google Scholar
  46. Webbe, G. (1962). The transmission of Schistosoma haematobium is an area of Lake Province, Tanganyika. Bull. WHO, 27, 5985.Google Scholar
  47. Woodruff, D. S. (1978). Biological control of schistosomiasis by genetic manipulation of intermediate host snail populations. Proc. Int. Conf. Schistosomiasis, Cairo, Egypt (October 18–25, 1975 ), 2, 755.Google Scholar
  48. Woodruff, D. S. (1985). Genetic control of schistosomiasis: a technique based on the genetic manipulation of intermediate host snail populations. Comp. Pathobiol. (This volume).Google Scholar
  49. Wright, C. A. (1971). Comments on the paper “Genetics of a molluscan vector of schistosomiasis” by C. S. Richards. Trop. Dis. Bull., 68, 333–335.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Madeleine Fletcher
    • 1
    • 2
  1. 1.Department of Epidemiology and Public HealthYale University School of MedicineNew HavenUSA
  2. 2.Department of Community HealthUniversity of AddisAbebaEthiopia

Personalised recommendations