Advertisement

The tRNAAsp-Aspartyl-tRNA Synthetase System from Yeast: Structural and Functional Studies

  • J. P. Ebel
  • P. Dunman
  • R. Giege
  • B. Lorber
  • D. Moras
  • P. Romby
  • J. C. Thierry
  • E. Westhof
Part of the NATO ASI Series book series (NSSA, volume 98)

Abstract

Transfer ribonucleic acids (tRNAs) play a central role in the complex mechanism of protein synthesis. In that process their chief function is to carry amino acids to the ribosomes, to decode the messenger RNA and to incorporate the correct amino acid into the growing polypeptide chain.

Keywords

tRNA Molecule Anticodon Loop Carry Amino Acid Anticodon Stem Correct Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. R. Schimmel, D. Soll, J. N. Abelson, eds., “Transfer RNA Structure, Properties and Recognition,” Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1979).Google Scholar
  2. 2.
    J. Gangloff, G. Keith, J. P. Ebel, and G. Dirheimer, Structure of aspartate-tRNA from brewer’s yeast. Nature New Biol. 230:125–127 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Grosjean, S. De Henau, and D. M. Crothers, On the physical basis in the genetic coding interactions, Proc. Natl. Acad. Sci. USA 75:160–614 (1978).CrossRefGoogle Scholar
  4. 4.
    D. Moras, M. B. Comarmond, J. Fischer, R. Weiss, J. C. Thierry, J. P. Ebel, and R. Giegé, Crystal structure of yeast tRNAAsp, Nature 286:669–674 (1980).CrossRefGoogle Scholar
  5. 5.
    P. V. Huong, E. Audry, R. Giege, D. Moras, J. C. Thierry, and M. B. Comarmond, Conformational changes in tRNAAsp: laser Raman and X-ray crystallographic studies, Biopolymers 23:71–81 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    J. H. Konnert, and O. Hendrickson, A restrained-parameter thermal factor refinement procedure, Acta Cryst. A36:344–350 (1980).Google Scholar
  7. 7.
    T. A. Jones, FRODo, a graphic modeling program, Appl. Cryst. 11:268–272 (1978).CrossRefGoogle Scholar
  8. 8.
    G. J. Quigley, N. C. Seeman, A. H. T. Wang, F. L. Suddath, and A. Rich, Yeast phenylalanyl transfer RNA: atomic coordinates and torsion angles, Nucl. Acids. Res. 2:2329–2339 (1975).CrossRefGoogle Scholar
  9. 9.
    E. Westhof, P. Dumas, and D. Moras, Loop stereochemistry and dynamics in transfer RNA, J. Biomol. Str. Dyn. 1:337–355 (1983).CrossRefGoogle Scholar
  10. 10.
    H. Frauenfelder, G. A. Petsko, and D. Tsernoglou, Temperature-dependent X-ray diffraction as a probe of protein structural dynamics, Nature 280:558–560 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    P. J. Artymiuk, C. C. F. Blake, D. E. P. Grace, S. I. Oatley, D. C. Phillips, and N. J. E. Sternberg, Crystallographic studies of the dynamic properties of lysozyme, Nature 280:563–566 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Giege, D. Moras, and J. C. Thierry, Yeast transfer RNAAsp: a new high resolution X-ray diffracting crystal form of a transfer RNA, J. Mol. Biol. 115:91–96 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Dietrich, R. Giege, M. B. Comarmond, J. C. Thierry, and D. Moras, Crystallographic studies on the aspartyl-tRNA synthetase-tRNAAsp system from yeast, J. Mol. Biol. 138:129–135 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Giege, B. Lorber, J. P. Ebel, J. C. Thierry, and D. Moras, Crystallization du complexe forme entre l’aspartate de levure et son aminoacyl-tRNA synthetase, C. R. Séances Acad. Sci. Paris Série D 291:393–396 (1980).Google Scholar
  15. 15.
    B. Lorber, R. Giege, J. P. Ebel, C. Beruhet, J. C. Thierry, and D. Moras, Crystallization of a tRNA-aminoacyl-tRNA synthetase complex, J. Biol. Chem. 258:8429–8435 (1983).PubMedGoogle Scholar
  16. 16.
    J. T. Kusmierek and B. Singer, Sites of alkylation of polyU by agents of varying carcinogenicity and stability of products, Biochim. Biophys. Acta 142:536–538 (1976).Google Scholar
  17. 17.
    V. V. Vlassov, R. Geige, and J. P. Ebel, Tertiary structure of tRNAs in solution monitored by phosphodiester modification with ethylnitrosourea, Eur. J. Biochem. 119:51–59 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    V. V. Vlassov, D. Kern, P. Romby, R. Giegé, and J. P. Ebel, Interaction of tRNAPhe and tRNAVal with aminoacyl-tRNA synthetases: a chemical modification study, Eur. J. Biochem. 132:537–544 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    R. Starzyk, S. Koontz, and P. Schimmel, A covalent adduct between the uracil ring and the active site of an aminoacyl-tRNA synthetase, Nature 298:136–140 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    D. Moras, B. Lorber, P. Romby, J. P. Ebel, R. Giege, A. Lewitt-Bentley, and M. Roth, Yeast tRNAAsp-aspartyl-tRNA synthetase: the crystalline complex, J. Biomol. Str. Dyn. 1:209–223 (1983).CrossRefGoogle Scholar
  21. 21.
    A. Rich and P. R. Schimmel, Structural organization of complexes of transfer RNAs with aminoacyl-tRNA synthetases, Nucleic Acids Res. 4:1649–1665 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • J. P. Ebel
    • 1
  • P. Dunman
    • 1
  • R. Giege
    • 1
  • B. Lorber
    • 1
  • D. Moras
    • 1
  • P. Romby
    • 1
  • J. C. Thierry
    • 1
  • E. Westhof
    • 1
  1. 1.Institut de Biologie Moléculaire et CellulaireStrasbourgFrance

Personalised recommendations