Organization and Cell Cycle Periodic Expression of Human Histone Genes

  • G. S. Stein
  • J. L. Stein
  • F. Marashi
Part of the NATO ASI Series book series (NSSA, volume 98)


In this chapter we will summarize several of the experimental approaches we have been taking to examine human histone genes. The structure and organization of human histone genes will be discussed, particularly within the context of the putative relationships of specific regions of the genes to their expression. Approaches to assessing the levels at which control of histone gene expression resides will also be considered. Results will be presented which suggest that: a) Human histone genes are a family of moderately reiterated sequences with variations in the structure, organization, and possibly in the regulation of the various copies. b) At least 15 different, though not necessarily all, human histone genes are coordinately expressed during the S phase of the cell cycle and appear to be temporally and functionally coupled with DNA replication. c) There are both transcriptional and post-transcriptional components to the regulation of those histone genes expressed in conjunction with DNA replication.


HeLa Cell Histone Protein Histone Gene Histone mRNAs Human Histone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Lawn, E. F. Fritsch, R. C. Parker, G. Blake, and T. Maniatis, The isolation and characterization of linked δ- and β-globin genes from a cloned library of human DNA, Cell 15:1157–1174 (1978).PubMedGoogle Scholar
  2. 2.
    R. P. Lifton, M. L. Goldberg, R. W. Karp, and D. S. Hogness, The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications, Cold Spring Harbor Symp. Quant. Biol. 42:1047–1051 (1977).Google Scholar
  3. 3.
    K. Gross, W. Schaffner, J. Telford, and M. Birnstiel, Molecular analysis of the histone gene cluster of Psammechinus miliaris: III. Polarity and asymmetry of the histone-coding sequences, Cell 8:479–484 (1976).PubMedGoogle Scholar
  4. 4.
    M. Wu, D. S. Holmes, N. Davidson, R. H. Cohn, and L. H. Kedes, The relative positions of sea urchin histone genes on the chimeric Plasmids pSp2 and pSpl7 as studied by electron microscopy, Cell 9:163–169 (1976).PubMedGoogle Scholar
  5. 5.
    M. C. Wilson and M. Melli, Determination of the number of histone genes in human DNA, J. Mol. Biol. 110:511–535 (1977).PubMedGoogle Scholar
  6. 6.
    L. C. Yu, P. Szabo, T. W. Borun, and W. Prensky, The localization of the genes coding for histone H4 in human chromosomes, Cold Spring Harbor Symp. Quant. Biol. 42:1101–1105 (1977).Google Scholar
  7. 7.
    M. E. Chandler, L. H. Kedes, R. H. Cohn, and J. J. Yunis, Genes coding for histone proteins in man are located on the distal end of the long arm of chromosome 7, Science 205:908–910 (1979).PubMedGoogle Scholar
  8. 8.
    F. Sierra, A. Lichtler, F. Marashi, R. Rickles, T. Van Dyke, S. Clark, J. Wells, G. Stein, and J. Stein, Organization of hyman histone genes, Proc. Natl. Acad. Sci. USA 79:1795–1799 (1982).Google Scholar
  9. 9.
    N. Carozzi, F. Marashi, M. Plumb, S. Zimmerman, A. Zimmerman, J. R. E. Wells, G. Stein, and J. Stein, Clustering of human H1 and core histone genes, Science 22:41115 (1984).Google Scholar
  10. 10.
    N. Heintz, M. Zernik, and R. G. Roeder, The structure of the human histone genes: clustered but not tandemly repeated, Cell 24:661–668 (1981).PubMedGoogle Scholar
  11. 11.
    S. J. Clark, Chicken and human histone genes, Ph.D. Thesis, University of Adelaide, Adelaide, Australia (1982).Google Scholar
  12. 12.
    L. M. Hereford, K. Fahrner, J. Woolford, and M. Rosbash, Isolation of yeast histone genes H2A and H2B, Cell 18:1261–1271 (1979).PubMedGoogle Scholar
  13. 13.
    J. W. Wallis, L. Hereford, and M. Grunstein, Histone H2B genes of yeast encode two different proteins, Cell 22:799–805 (1980).PubMedGoogle Scholar
  14. 14.
    M. M. Smith, The organization of the yeast histone gene, in: “Histone Genes,” G. S. Stein, J. L. Stein, and W. F. Marzluff, eds. John Wiley and Sons, New York, (1984).Google Scholar
  15. 15.
    M. Zernik, N. Heintz, I. Boime, and R. G. Roeder, Xenopus laevis histone genes: variant H1 genes are present in different clusters, Cell 22:807–815 (1980).PubMedGoogle Scholar
  16. 16.
    A. F. Moorman, R. T. de Laaf, O. H. Destree, J. Telford, and M. L. Birnstiel, Histone genes from Xenopus laevis: molecular cloning and initial characterization, Gene 10:185–193 (1980).PubMedGoogle Scholar
  17. 17.
    W. Van Dongen, L. deLaaf, R. Zaal, A. Moorman, and O. Destree, The organization of the histone genes in the genome of Xenopus laevis, Nucl. Acids Res. 9:2297–2311 (1981).Google Scholar
  18. 18.
    E. C. Stephenson, H. P. Erba, and J. G. Gall, Histone gene clusters of the Newt Notophthalmus are separated by long tracts of satellite DNA, Cell 24:639–647 (1981).PubMedGoogle Scholar
  19. 19.
    J. G. Gall, E. C. Stephenson, H. P. Erba, M. O. Diaz, and G. Barsacchi-Pilone, Histone genes are located at the sphere loci of Newt Lampbrush chromosomes, Chromosoma 84:159–171 (1981).PubMedGoogle Scholar
  20. 20.
    E. C. Stephenson, Organization and expression of Newt histone genes, in: “Histone Genes,” G. S. Stein, J. L. Stein, and W. F. Marzluff, eds. John Wiley and Sons, New York (1984).Google Scholar
  21. 21.
    R. P. Harvey, J. R. E. Wells, Chicken histones and their variants, in: “Histone Genes,” G. S. Stein, J. L. Stein, aand W. F. Marzluff, eds. John Wiley and Sons, New York (1984).Google Scholar
  22. 22.
    J. C. Engel, Organization and expression of chicken histone genes, in: “Histone Genes,” G. S. Stein, J. L. Stein, and W. F. Marzluff, eds., John Wiley and Sons, New York (1984).Google Scholar
  23. 23.
    A. Seiler-Tuyns and M. L. Birnstiel, Structure and expression in L-cells of a cloned H4 histone gene of the mouse, J. Mol. Biol. 151:607–625 (1981).PubMedGoogle Scholar
  24. 24.
    W. F. Marzluff, Organization and expression of mouse histone genes, in: “Histone Genes,” G. S. Stein, J. L. Stein, and W. F. Marzluff, eds., John Wiley and Sons, New York (1984).Google Scholar
  25. 25.
    R. J. Britten and E. H. Davidson, Gene regulation for higher cells. A Theory, Science 165:349–357 (1969).PubMedGoogle Scholar
  26. 26.
    R. Britten and D. E. Kohne, Repeated sequences in DNA, Science 161:529–540 (1968).PubMedGoogle Scholar
  27. 27.
    E. H. Davidson, G. A. Galau, R. C. Angerer, and R. J. Britten, Comparative aspects of DNA organization in metazoa, Chromosoma 51:253–259 (1975).PubMedGoogle Scholar
  28. 28.
    W. R. Jelinek and C. W. Schmid, Repetitive sequences in eukaryotic DNA and their expression, Ann. Rev. Biochem. 51:813–844 (1982).PubMedGoogle Scholar
  29. 29.
    C.M. Houck, F. P. Rinehart, and C. W. Schmid, A ubiquitous family of repeated DNA sequences in the human genome, J. Mol. Biol. 132:289–306 (1979).PubMedGoogle Scholar
  30. 30.
    F. Sierra, A. Leza, F. Marashi, M. Plumb, R. Rickles, T. Van Dyke, S. Clark, J. R. E. Wells, G. S. Stein, and J. L. Stein, Human histone genes are interspersed with members of the Alu family and with other transcribed sequences. Biochem. Biophys. Res. Comm. 104:785–792 (1982).PubMedGoogle Scholar
  31. 31.
    I. Isenberg, Histones, Ann. Rev. Biochem. 48:159–191 (1979).PubMedGoogle Scholar
  32. 32.
    A. C. Lichtler, F. Sierra, S. Clark, J. R. E. Wells, J. L. Stein, and G. S. Stein, Multiple H4 histone mRNAs of HeLa cells are encoded in different genes, Nature 298:195–198 (1982).PubMedGoogle Scholar
  33. 33.
    A. C. Lichtler, S. Detke, I. R. Phillips, G. S. Stein, and J. L. Stein, Multiple forms of H4 histone mRNA in human cells, Proc. Natl. Acad. Sci, USA 77:1942–1946 (1980).PubMedGoogle Scholar
  34. 34.
    M. Grunstein, S. Levy, P. Schedl, and L. Kedes, Messenger RNAs for individual histone proteins: fingerprint analysis and in vitro translation, Cold Spring Harbor Symp. on Quant. Biol. 38:717–724 (1973).Google Scholar
  35. 35.
    W. Schaffner, G. Kunz, H. Daetwyler, J. Telford, H. O. Smith, and M. L. Birnstiel, Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing, Cell 14:655–671 (1978).PubMedGoogle Scholar
  36. 36.
    M. Busslinger, R. Portmann, J. C. Irminger, and M. L. Birnstiel, Ubiquitous and gene-specific regulatory 5′ sequences in a sea urchin histone DNA clone coding for histone protein variants, Nucl. Acids Res. 8:957–977 (1980).Google Scholar
  37. 37.
    Y. Ohe, H. Hayashi, and K. Iwai, Human spleen histone H2B, J. Biochem. 85:615–624 (1979).PubMedGoogle Scholar
  38. 38.
    F. Marashi, K. Prokopp, J. Stein, and G. Stein, Evidence for a human histone gene cluster containing H2B and H2A pseudogene, Proc. Natl. Acad. Sci. USA, 81:1936 (1984).PubMedGoogle Scholar
  39. 39.
    C. C. Hentschel and M. L. Birnstiel, The organization and expression of histone gene families, Cell 25:301–313 (1981).PubMedGoogle Scholar
  40. 40.
    R. P. Harvey, A. J. Robins, and J. R. E. Wells, Independently evolving chicken H2B genes: identification of a ubiquitous H2B-specific 5′ element, Nucl. Acids Res. 10:7851–7863 (1982).Google Scholar
  41. 41.
    E. F. Fritsch, R. M. Lawn, and T. Maniatis, Molecular cloning and characterization of the human β-like globin gene cluster, Cell 19:959–972 (1980).PubMedGoogle Scholar
  42. 42.
    J. Lauer, C. K. J. Shen, and T. Maniatis, The chromosomal arrangement of human α-like globin genes: sequence homology and α-globin gene deletions, Cell 20:119–130 (1980).PubMedGoogle Scholar
  43. 43.
    F. Sierra, G. Stein, and J. Stein, Structure and in vitro transcription of a human H4 histone gene, Nucl. Acids. Res. 11:7069–7086 (1983).Google Scholar
  44. 44.
    R. Lewin, How mammalian RNA returns to its genome, Science 219:1052–1054 (1983).PubMedGoogle Scholar
  45. 45.
    C. D. Wilde, C. E. Crowther, T. P. Cripe, M. Gwo-Shu Lee, and N. J. Cowan, Evidence that a human α-tubulin pseudogene is derived from its corresponding mRNA, Nature 297:83–84 (1982).PubMedGoogle Scholar
  46. 46.
    Y. Nishioka, A. Leder, and P. Leder, Unusual α-globin-like gene that has cleanly lost both globin intervening sequences, Proc. Natl. Acad. Sci. USA 77:2806–2809 (1980).PubMedGoogle Scholar
  47. 47.
    G. F. Hollis, P. A. Hieter, O. W. McBride, D. Swan, and P. Leder, Processed genes: a dispersed human immunoglobin gene bearing evidence of RNA-type processing, Nature 296:321–325 (1982).PubMedGoogle Scholar
  48. 48.
    P. Jagadeeswaran, B. G. Forget, and S. M. Weissman, Short interspersed repetitive DNA elements in eucaryotes: transposable DNA elements generated by reverse transcription of RNA Pol III transcripts? Cell 26:141–142 (1981).PubMedGoogle Scholar
  49. 49.
    N. J. Proudfoot and T. Maniatis, The structure of a human α-globin pseudogene and its relationship to a-globin gene duplication, Cell 21:537–544 (1980).PubMedGoogle Scholar
  50. 50.
    E. Lacy and T. Maniatis, The nucleotide sequence of a rabbit β-globin pseudogene. Cell 21:545–553 (1980).PubMedGoogle Scholar
  51. 51.
    G. Childs, R. Maxson, R. H. Cohn, and L. Kedes, Orphons: dispersed genetic elements derived from tandem repetitive genes of eucaryotes, Cell 23:651–663 (1981).PubMedGoogle Scholar
  52. 52.
    M. Plumb, J. Stein, and G. Stein, Coordinate regulation of multiple histone mRNAs during the cell cycle in HeLa cells, Nucl. Acids. Res. 11:2391–2410 (1983).Google Scholar
  53. 53.
    J. A. Engle, B. J. Sugarman, and J. B. Dodgson, A chicken histone H3 gene contains intervening sequences, Nature 297:434–436 (1982).Google Scholar
  54. 54.
    A. Efstratiadis, J. W. Posakony, T. Maniatis, R. M. Lawn, C. O’Connell, R. A. Spritz, J. K. de Riel, B. G. Forget, S. M. Weissman, J. L. Slightom, A. E. Blechl, O. Smithies, F. E. Baralle, C. C. Shoulders, and N. J. Proudfoot, The structure and evolution of the human (β-globin gene family, Cell 21:653–668 (1980).PubMedGoogle Scholar
  55. 55.
    C. Benoist, K. O’Hare, R. Breathnach, and P. Chambon, The ovalbumin gene sequence of putative control regions, Nucl. Acids Res. 8:127–142 (1980).Google Scholar
  56. 56.
    L. H. Kedes, Histone genes and histone messengers, Ann. Rev. Biochem. 48:837–870 (1979).PubMedGoogle Scholar
  57. 57.
    R. Tjian, T antigen binding and the control of SV40 gene expression, Cell 26:1–2 (1981).PubMedGoogle Scholar
  58. 58.
    J. Banerji, S. Rusconi, and W. Schaffner, Expression of a β-globin gene is enhanced by remote SV40 DNA sequences, Cell 27:299–308 (1981).PubMedGoogle Scholar
  59. 59.
    L. J. Korn and D. D. Brown, Nucleotide sequence of Xenopus borealis oocyte 5S DNA: Comparison of sequences that flank several related eucaryotic genes, Cell 15:1145–1156 (1978).PubMedGoogle Scholar
  60. 60.
    C. Birchmeier, R. Grosschedl, and M. L. Birnstiel, Generation of authentic 3′ termini of an H2B mRNA in vivo is dependent on a short inverted DNA repeat and on spacer sequence, Cell 28:739–745 (1982).PubMedGoogle Scholar
  61. 61.
    J. L. Manley, A. Fire, A. Cano, P. A. Sharp, and M. L. Geftner, DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract, Proc. Natl. Acad. Sci USA 77:3855–3859 (1980).PubMedGoogle Scholar
  62. 62.
    S. Detke, J. L. Stein, and G. S. Stein, Synthesis of histone messenger RNAs by RNA polymerase II in nuclei from S phase HeLa S3 cells, Nucl. Acids Res. 5:1515–1528 (1978).Google Scholar
  63. 63.
    R. Grosschedl and M. L. Birnstiel, Spacer DNA sequences upstream of the T-A-T-A-A-A-T-A sequence are essential for promotion of H2A histone gene transcription in vivo, Proc. Natl. Acad. Sci. USA 77:7102–7106 (1980).PubMedGoogle Scholar
  64. 64.
    G. C. Grosveld, C. K. Shewmaker, P. Jat, and R. A. Flavell, Localization of DNA sequences necessary for transcription of the rabbit β-globin gene in vitro, Cell 25:215–226 (1981).PubMedGoogle Scholar
  65. 65.
    R. Grosschedl and M. L. Birnstiel, Delimitation of far upstream sequences required for maximal in vitro transcription of an H2A histone gene, Proc. Natl. Acad. Sci. USA 79:297–301 (1982).PubMedGoogle Scholar
  66. 66.
    J. Pan, J. T. Elder, C. H. Duncan, and S. M. Weissman, Structural analysis of interspersed repetitive polymerase III transcription units in human DNA, Nucl. Acids Res. 9:1151–1170 (1981).Google Scholar
  67. 67.
    J. L. Manley and M. T. Colozzo, Synthesis in vitro of an exceptionally long RNA transcript promoted by an Aluí sequence, Nature 300:376–379 (1982).PubMedGoogle Scholar
  68. 68.
    P. K. Ghosh, V. B. Reddy, J. Swinscoe, P. Lebowitz, and S. M. Weissman, Heterogeneity and 5′-terminal structures of the late DNAs of Simian Virus 40, J. Mol. Biol. 126:813–846 (1978).PubMedGoogle Scholar
  69. 69.
    N. J. Proudfoot, M. H. M. Shander, J. L. Manley, M. L. Gefter, and T. Maniatis, Structure and in vitro transcription of human globin genes, Science 209:1329–1336 (1980).PubMedGoogle Scholar
  70. 70.
    F. Marashi, L. Baumbach, R. Rickles, F. Sierra, J. L. Stein, and G. S. Stein, Histone proteins in HeLa S3 cells are synthesized in a cell cycle stage specific manner. Science 215:683–685 (1982).PubMedGoogle Scholar
  71. 71.
    J. Spalding, K. Kajiwara, and G. C. Mueller, The metabolism of basic proteins in HeLa cell nuclei, Proc. Natl. Acad. Sci. USA 56:1535–1542 (1966).PubMedGoogle Scholar
  72. 72.
    G. Stein and T. W. Borun. The synthesis of acidic chromosomal proteins during the cell cycle of HeLa S3 cells, J. Cell Biol. 52:292–307 (1972).PubMedGoogle Scholar
  73. 73.
    R. S. Wu and W. M. Bonner, Separation of basal histone synthesis from S phase histone synthesis in dividing cells, Cell 27:321–330 (1981).PubMedGoogle Scholar
  74. 74.
    R. S. Wu, S. Tsai, and W. M. Bonner, Patterns of histone variant synthesis can distinguish G0 from G1 cells, Cell 31:367–374 (1982).PubMedGoogle Scholar
  75. 75.
    M. A. Tarnowka, C. Baglioni, and C. Basilico, Synthesis of H1 histone by BHK cells in Gl, Cell 15:163–171 (1978).PubMedGoogle Scholar
  76. 76.
    I-M. Chiu and W. F. Marzluff, Uncoordinate synthesis of histone H1 in cells arrested in the Gl phase, Biochem. Biophys. Acta 699:173–182 (1982).Google Scholar
  77. 77.
    V. E. Groppi and P. Coffino. Gl and S phase mammalian cells synthesize histones at equivalent rates, Cell 21:195–204 (1980).PubMedGoogle Scholar
  78. 78.
    E. Robbins and T. W. Borun, The cytoplasmic synthesis of histones in HeLa cells and its temporal relationship to DNA replication, Proc. Natl. Acad. Sci. USA 57:409–416 (1967).PubMedGoogle Scholar
  79. 79.
    A. M. Delegeane and A. L. Lee, Coupling of histone and DNA synthesis in the somatic cell cycle, Science 215:79–81 (1982).PubMedGoogle Scholar
  80. 80.
    J. L. Stein, G. S. Stein, and P. McGuire, Histone messenger RNA from HeLa cells: Evidence for modified 5′ termini, Biochemistry 16:2207–2213 (1977).PubMedGoogle Scholar
  81. 81.
    B. Moss, A. Gershowitz, L. A. Weber, and C. Baglioni, Histone mRNAs contain blocked and methylated 5′ terminal sequences but lack methylated nucleosides at internal positions, Cell 10:113–120 (1977).PubMedGoogle Scholar
  82. 82.
    R. Rickles, F. Marashi, F. Sierra, S. Clark, J. Wells, J. Stein, and G. Stein, Analysis of histone gene expression during the cell cycle in HeLa cells by using cloned human histone genes, Proc. Natl. Acad. Sci. USA 79:749–753 (1982).PubMedGoogle Scholar
  83. 83.
    L. Green, G. Stein, and J. Stein, Histone gene expression in human diploid fibroblasts: analysis of histone mRNA levels using cloned human histone genes, Mol. Cell. Biochem. 60:123 (1984).Google Scholar
  84. 84.
    G. S. Stein, J. L. Stein. W. D. Park, S. Detke, A. L. Lichtler, E. A. Shephard, R. L. Jansing, I. R. Phillips, Regulation of histone gene expression in HeLa S3 cells, Cold Spring Harbor Symp. Quant. Biol. 42:1107–1120 (1977).Google Scholar
  85. 85.
    S. Detke, A. Lichtler, I. Phillips, J. L. Stein, and G. S. Stein, Reassessment of histone gene expression during the cell cycle in human cells by using homologous H4 histone cDNA, Proc. Natl. Acad. Sci. USA 76:4995–4999 (1979).PubMedGoogle Scholar
  86. 86.
    G. S. Stein, W. D. Park, C. L. Thrall, R. J. Mans, and J. L. Stein, Regulation of histone gene transcription during the cell cycle by nonhistone chromosomal proteins, Nature 257:764–767 (1975).PubMedGoogle Scholar
  87. 87.
    J. L. Stein, C. L. Thrall, W. D. Park, R. J. Mans, and G. S. Stein, Hybridization analysis of histone messenger RNA association with polyribosomes during the cell cycle, Science 189:557–558 (1975).PubMedGoogle Scholar
  88. 88.
    I. Parker and W. Fitsehen, Histone mRNA metabolism during the mouse fibroblast cell cycle, Cell Diff. 9:23–30 (1980).Google Scholar
  89. 89.
    I. M. Chiu, D. Cooper, and W. F. Marzluff, Unscheduled synthesis of histone H1 in isoleucine starved cells, Abstracts of the secondannual meeting of the American Cancer Society (Florida Division), No. 38 (1979).Google Scholar
  90. 90.
    N. Heintz, H. L. Sive, and R. G. Roeder, Regulation of human histone gene expression: Kinetics of accumulation and changes in the rate of synthesis and in the half-lives of individual histone mRNAs during the HeLa cell cycle, Mol. Cell Biol. 3:539–550 (1983).Google Scholar
  91. 91.
    L. M. Hereford, M. A. Osley, J. R. Ludwig, and C. S. McLaughlin, Cell cycle regulation of yeast histone mRNA, Cell 24:367–375 (1981).PubMedGoogle Scholar
  92. 92.
    M. Plumb, F. Marashi, L. Green, A. Zimmerman, S. Zimmerman, J. Stein, and G. Stein, The cell cycle regulation of human histone H1 mRNA, Proc. Natl. Acad. Sci, USA 81:434–438 (1984).PubMedGoogle Scholar
  93. 93.
    D. M. Prescott, R. M. Liskay, and G. M. Stancel, The cell life cycle and the Gl period, in: “Cell Growth, NATO Advanced Study Institutes Series A: Life Sciences,” Volume 38, C. Nicolini, ed., Plenum Press, New York, pp. 305–314 (1982).Google Scholar
  94. 94.
    T. W. Borun, F. Gabrielli, K. Ajiro, A. Zweidler, and C. Baglioni, Further evidence of transcriptional and translational control of histone messenger RNA during the HeLa S3 cycle, Cell 4:59–67 (1975).PubMedGoogle Scholar
  95. 95.
    M. Breindl and D. Gallwitz, Effects of cordycepin, hydroxyurea and cycloheximide on histone mRNA synthesis in synchronized HeLa cells, Mol. Biol. Reports 1:263–268 (1974).Google Scholar
  96. 96.
    M. Jacobs-Lorena, F. Gabrielli, T. W. Borun, and C. Baglioni, Studies on the transcriptional control of histone synthesis, Biochem. Biophys. Acta. 324:275–281 (1973).Google Scholar
  97. 97.
    L. Hereford, S. Bromley, and M. A. Osley, Periodic transcription of yeast histone genes, Cell 30:305–310 (1982).PubMedGoogle Scholar
  98. 98.
    R. P. Perry and D. E. Kelley, Messenger RNA turnover in mouse L cells, J. Mol. Biol. 79:681–696 (1973).PubMedGoogle Scholar
  99. 99.
    N. S. Kunkel, K. Hemminki, and E. S. Weinberg, Size of histone gene transcripts in different embryonic stages of the sea urchin, Strongylocentrotus purpuratus, Biochemistry 17:2591–2598 (1975).Google Scholar
  100. 100.
    P. A. Hieter, M. B. Hendricks, K. Hemminki, and E. S. Weinberg, Histone gene switch in the sea urchin embryo: indentification of late embryonic histone mRNAs and the control of their synthesis, Biochemistry 18:2707–2716 (1979).PubMedGoogle Scholar
  101. 101.
    R. Maxson, T. Mohun, G. Gormezano, G. Childs, and L. Kedes, Distinct organizations and patterns of expression of early and late gene sets in the sea urchin, Nature 301:120–125 (1983).PubMedGoogle Scholar
  102. 102.
    R. W. Lennox and L. H. Cohen, The HI subtypes of mammals: metabolic characteristics and tissue distribution, in: “Histone Genes,” G. S. Stein, J. L. Stein, and W. F. Marzluff, eds., John Wiley and Sons, New York (1984).Google Scholar
  103. 103.
    A. Zweidler, Core histone variants of the mouse: primary structure and differential expression, in: “Histone Genes,” G. S. Stein, J. L. Stein, W. F. Marzluff, eds., John Wiley and Sons, New York (1984).Google Scholar
  104. 104.
    H. R. Woodland and E. D. Adamson, The synthesis and storage of histones during the oogenesis of Xenopus laevis, Develop. Biol. 57:118–135 (1977).Google Scholar
  105. 105.
    A. Skoultchi and P. R. Gross, Maternal histone messenger RNA: Detection by molecular hybridization, Proc. Natl. Acad. Sci. USA 70:2840–2844 (1973).PubMedGoogle Scholar
  106. 106.
    D. E. Woods and W. Fitschen, The mobilization of maternal histone messenger RNA after fertilization of sea urchin eggs, Cell Diff 7:103–114 (1978).Google Scholar
  107. 107.
    R. Maxson and F. Wilt, Accumulation of the early histone mRNAs during development of S. purpuratus, Dev. Biol. 94:435–440 (1982).PubMedGoogle Scholar
  108. 108.
    H. Stahl and D. Gallwitz, Fate of histone messenger RNAs in synchronized HeLa cells in the absence of initiation of protein synthesis, Eur. J. Biochem. 72:385–392 (1977).PubMedGoogle Scholar
  109. 109.
    M. Breindl and D. Gallwitz, On the translational control of histone synthesis. Eur. J. Biochem. 45:91–97 (1974).PubMedGoogle Scholar
  110. 110.
    D. Gallwitz and G. C. Mueller, Histone synthesis in vitro on HeLa cell microsomes, J. Biol. Chem. 244:5947–5952 (1969).PubMedGoogle Scholar
  111. 111.
    E. A. Shephard, I. R. Phillips, J. Davis, J. L. Stein, and G. S. Stein, Evidence for the resumption of DNA replication prior to histone synthesis in HeLa cells after release from treatment with hydroxyurea, FEBS Lett. 140:189–192 (1982).PubMedGoogle Scholar
  112. 112.
    W. B. Butler and G. C. Mueller, Control of histone synthesis in HeLa cells, Biochim. Biophys. Acta. 294:481–491 (1973).Google Scholar
  113. 113.
    G. Stein, J. Stein, E. Shephard, W. Park, and I. Phillips, Evidence that the coupling of histone gene expression and DNA synthesis in HeLa S3 cells is not mediated at the transcriptional level, Biochem. Biophys. Res. Comm. 77:245–252 (1977).Google Scholar
  114. 114.
    T. W. Borun, M. Scharff, and F. Robbins, Rapidly labeled, polyribosome-associated RNA having the properties of histone messenger, Proc. Natl. Acad. Sci. USA 58:1977–1983 (1967).PubMedGoogle Scholar
  115. 115.
    L. H. Kedes and P. R. Gross, Identification in cleaving embryos of three RNA species serving as templates for the synthesis of nuclear proteins, Nature 223:1335–1339 (1969).PubMedGoogle Scholar
  116. 116.
    N. Craig, D. E. Kelley, and R. P. Perry, Lifetime of the messenger RNAs which code for ribosomal proteins in L-cells, Biochem. Biophys. Acta 246:493–498 (1971).Google Scholar
  117. 117.
    M. Plumb, J. Stein, and G. Stein, Influence of DNA synthesis inhibition on the coordinate expression of core human histone genes during S phase, Nucl. Acids Res. 11:7927–7945 (1983).Google Scholar
  118. 118.
    L. Baumbach, F. Marashi, M. Plumb, G. Stein, and J. Stein, Inhibition of DNA replication coordinately reduces cellular levels of core and H1 histone mRNAs: requirement for protein synthesis, Biochemistry 23:1618 (1984).PubMedGoogle Scholar
  119. 119.
    J. Huberman, New Views of the biochemistry of eucaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase, Cell 23:647–648 (1981).PubMedGoogle Scholar
  120. 120.
    M. A. Osley and L. Hereford, Identification of a sequence responsible for periodic synthesis of yeast histone 2A mRNA, Proc. Natl. Acad. Sci. USA 79:7689–7693 (1982).PubMedGoogle Scholar
  121. 121.
    C. C. Hentschel, J.-C Irminger, P. Bucher, and M. L. Birnstiel, Sea urchin histone mRNA termini are located in gene regions downstream from putative regulatory sequences, Nature 285:147–151 (1980).PubMedGoogle Scholar
  122. 122.
    G. S. Stein, J. L. Stein, L. Baumbach, A. Leza, A. Lichtler, F. Marashi, M. Plumb, R. Rickles, F. Sierra, and T. Van Dyke, Organization and cell cycle regulation of human histone genes, in: “Proceedings of the New York Academy of Sciences Conference on Cell Proliferation, Cancer and Cancer Therapy,” Volume 397, R. Baserga, ed., pp. 148–167 (1982).Google Scholar
  123. 123.
    G. Childs, C. Nocente-McGrath, T. Lieber, C. Holt, and J. A. Knowles, Sea urchin (L. pictus) late stage histone H3 and H4 genes: Characterization and mapping of a clustered but nontandemly linked multigene family, Cell 31:383–393 (1982).PubMedGoogle Scholar
  124. 124.
    P. C. Turner and H. R. Woodland, Nucl. Acids Res. 10:3769–3780 (1982).Google Scholar
  125. 125.
    A. F. M. Moorman, P. A. J. de Boer, R. T. M. de Laaf, W. M. A. M. Dongen, and O. H. J. Destree, Primary structure of the histone H3 and H4 gene cluster of Xenopus laevis, FEBS Letters 136:45–52 (1981).PubMedGoogle Scholar
  126. 126.
    E. C. Stephenson, H. P. Erba, and J. G. Gall, characterization of a cloned histone gene cluster of the newt Notophthalmus veridescens, Nucl. Acids Res. 9:2281–2293 (1981).Google Scholar
  127. 127.
    M. Grunstein, K. E. Diamond, E. Knoppel, and J. E. Grunstein, Comparison of the early histone H4 gene sequence of Stronglyocentrotus purpuratus with maternal, early, and late histone H4 mRNA sequences, Biochemistry 20:1216–1223 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • G. S. Stein
    • 1
  • J. L. Stein
    • 1
  • F. Marashi
    • 1
  1. 1.Department of Biochemistry and Molecular Biology and Department of Immunology and Medical MicrobiologyUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations