The Structure of Satellite-Containing Chromatin of the Rat

  • Tibor Igo-Kemenes
Part of the NATO ASI Series book series (NSSA, volume 98)


During the last decade the main principles and general features of the chromatin structure have been established. The basic repetitive unit within the hierarchy of chromatin superstructures is the nucleosome, a structure revealed both by nuclease digestion of chromatin1,3 and by visualization of chromatin in the electron microscope4. At a second level of chromatin organization, the polynucleosomal chain (100 Å filament) is condensed into 250–300 A fibers. Although most of the experimental results suggest that the polynucleosomal chain in these fibers is organized in a continuous helical fashion called a solenoid5, alternative structures with discontinuous globular particles called superbeads6,7 or other arrangements involving four interwoven filaments8 have been proposed. At a third level, the 250–300 Å fibers are folded into loops or domains in both interphase nuclei and metaphase chromosomes9-11. While these three levels of condensation may account for the compaction of chromatin in interphase, additional levels of compaction were suggested in metaphase chromosomes12,13. (For comprehensive reviews on chromatin structure see references 14, 15).


Repeat Length Chromatin Fiber Micrococcal Nuclease Nonhistone Protein Satellite Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Hewish and L. A. Burgoyne, The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease, Biochem. Biophys. Res. Commun. 52:504–510 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Noll, Subunit structure of chromatin, Nature 251:249–251 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    R. D. Kornberg, Chromatin structure: A repeating unit of histones and DNA. Chromatin structure is based on a repeating unit of eight histone molecules and about 200 DNA base pairs, Science 184:868–871 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    A. L. Olins and D. E. Olins, Spheroid chromatin units (v-bodies), Science 183:330–332 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    F. Thoma, T. Koller, and A. Klug, Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin, J. Cell Biol. 83: 403–427 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Renz, P. Nehls, and J. Hozier, Involvement of histone H1 in the organization of the chromatin fiber, Proc. Natl. Acad. Sci. USA 74: 1879–1883 (1977).CrossRefGoogle Scholar
  7. 7.
    W. H. Straetling, U. Mueller, and H. Zentgraf, The higher order repeat structure of chromatin is built up of globular particles containing eight nucleosomes, Exp. Cell Res. 117:301–311 (1978).CrossRefGoogle Scholar
  8. 8.
    C. Nicolini, Chromatin structure: from nuclei to genes, Anticancer Research 3:63–86 (1983).PubMedGoogle Scholar
  9. 9.
    C. Benyajati and A. Worcel, Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster, Cell 9:393–407 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    K. W. Adolph, S. M. Cheng, J. R. Paulson, and U. K. Laemmli, Isolation of a protein scaffold from mitotic HeLa cell chromosomes, Proc. Natl. Acad. Sci. USA 74:4937–4941 (1977).CrossRefGoogle Scholar
  11. 11.
    T. Igo-Kemenes and H. G. Zachau, Domains in chromatin structure, Cold Spring Harbor Symp. Quant Biol. 42:109–118 (1978).CrossRefGoogle Scholar
  12. 12.
    M. P. F. Marsden and U. K. Laemmli, Metaphase chromosome structure: evidence for a radial loop model, Cell 17:849–858 (1980).CrossRefGoogle Scholar
  13. 13.
    A. L. Bak, J. Zeuthen, and G. H. C. Crick, Higher-order structure of human mitotic chromosomes, Proc. Natl. Acad. Sci. USA 74:1595–1599 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Igo-Kemenes, W. Hörz, and H. G. Zachau, Chromatin, Ann. Rev. Biochem. 51:89–121 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    I. L. Cartwright, M. A. Keene, G. C. Howard, S. M. Abmayr, G. Fleischmann, K. Lowenhaupt, and S. C. R. Elgin, Chromatin structure and gene activity: the role of nonhistone chromosomal proteins, CRC Critical Reviews in Biochemistry 13:1–86 (1983).CrossRefGoogle Scholar
  16. 16.
    J. J. Yunis, and W. G. Yasmineh, Satellite DNA in constitutive heterochromatin of the guinea pig, Science 168:263–265 (1970).CrossRefGoogle Scholar
  17. 17.
    J. H. Frenster, V. G. Allfrey, and A. E. Mirsky, Repressed and active chromatin isolated from interphase lymphocyte, Proc. Natl. Acad. Sci. USA 50:1026–1032 (1963).PubMedCrossRefGoogle Scholar
  18. 18.
    T. Igo-Kemenes, W. Greil, and H. G. Zachau, Preparation of soluble chromatin and specific chromatin fractions with restriction nucleases. Nucl. Acid Res. 4:3387–3400 (1977).CrossRefGoogle Scholar
  19. 19.
    P. R. Musich, F. L. Brown, and J. J. Maio, Subunit structure of chromatin and. the organization of eukaryotic highly repetitive DNA: nucleosomal proteins associated with a highly repetitive mammalian DNA, Proc. Natl. Acad, Sci, USA 74:3297–3301 (1977).CrossRefGoogle Scholar
  20. 20.
    X. Y. Zhang and W. Hörz, Analysis of highly purified satellite DNA containing chromatin from the mouse, Nucl. Acids Res. 10:1481–1494 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Pech, T. Igo-Kemenes, and H. G. Zachau, Nucleotide sequence of a highly repetitive component of rat DNA, Nucl. Acids Res. 7:417–432 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Fuke and H. Busch, Hind Ill-sensitive sites present once in every four repeats of EcoRI-sensitive sites in Novikoff rat hepatoma DNA, FEBS-Letters 99:136–140 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    L. Sealy, J. Hartley, J. Donelson, and R. Chalkley, Characterization of a highly repetitive sequence DNA family in rat, J. Mol. Biol. 145: 291–318 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Singer, Highly repeated sequences in mammalian genomes, Int. Rev. Cytol. 76:67–112 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    J. -N. Lapeyre, W. G. Beattie, A. Dugaiczyk, D. Vizard, and F. F. Becker, Eco RI-generated reiterated components of the rat genome I. Sequence of two (92 and 93 bp) related DNA fragments, Gene 10:339–346 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    W. Hörz and W. Altenburger, Nucleotide sequence of mouse satellite DNA, Nucl. Acids Res. 9:683–696 (1981).CrossRefGoogle Scholar
  27. 27.
    F. R. Whitney and A. V. Furano, The independent evolution of two closely related satellite DNA elements in rats (Rattus), Nucl. Acids Res. 11:291–304 (1983).CrossRefGoogle Scholar
  28. 28.
    E. M. Southern, Base sequence and evolution of guinea pig a-satellite DNA, Nature 227:794–798 (1970).PubMedCrossRefGoogle Scholar
  29. 29.
    T. H. Yosida, Chromosome differentiation and species evolution in rodents, in: “Chromosomes in Evolution of Eukaryotic Groups,” A. K. Sharma and A. Sharma, eds. CRC Press, Boca Raton, FL (1983).Google Scholar
  30. 30.
    T. H. Yosida, H. Kato, K. Tsuchiya, T. Sagai, and K. Moriwaki, Cytological survey of black rats, Rattus rattus, in southwest and central Asia, with specific regard to the evolutional relationship between three geographical types, Chromosoma (Berl.) 45:99–109 (1974).CrossRefGoogle Scholar
  31. 31.
    D. L. Brutlag, Molecular arrangement and evolution of heterochromatic DNA, Ann. Rev. Gent. 14:121–144 (1980).CrossRefGoogle Scholar
  32. 32.
    A. Omori, T. Igo-Kemenes, and H. G. Zachau, Different repeat lengths in rat satellite I DNA containing chromatin and bulk chromatin, Nucl. Acids Res. 8:5363–5375 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    T. Igo-Kemenes, W. Greil, and H. G. Zachau, Preparation of soluble chromatin and specific chromatin fractions with restriction nucleases, Nucl. Acids Res. 4:3387–3400 (1977).PubMedCrossRefGoogle Scholar
  34. 34.
    T. Igo-Kemenes, F. Miller, and H. G. Zachau, Use of restriction nucleases in the analysis of chromatin structure, in: “Gene Functions,” 12th FEBS Meeting Dresden 51, S. Rosenthal et al., eds. Pergamon Press, 219–299 (1978).Google Scholar
  35. 35.
    R. D. Kornberg, Structure of chromatin, Ann. Rev. Biochem. 46:931–1154 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    A. Prunell and R. D. Kornberg, Relation of nucleosomes to DNA sequences, Cold Spring Harbor Symp. Quant. Biol. 42;103–108 (1978).CrossRefGoogle Scholar
  37. 37.
    T. Igo-Kemenes, A. Omori, and H. G. Zachau, Nonrandom arrangement of nucleosomes in satellite I-containing chromatin of rat liver, Nucl. Acids Res. 8:5377–5390 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    T.-S. Hsieh and D. Brutlag, A protein that preferentially binds Drosophila satellite DNA, Proc. Natl. Acad. Sci USA 76:726–730 (1979).PubMedCrossRefGoogle Scholar
  39. 39.
    L. Levinger and A. Varshavsky, Protein D1 preferentially binds A + T-rich DNA in vitro and is a component of Drosophila melanogaster nucleosomes containing A + T-rich satellite DNA, Proc. Natl. Acad. Sci. USA 79:7152–7156 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    L. Levinger and A. Varshavsky, Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome, Cell 28:375–385 (1982).PubMedCrossRefGoogle Scholar
  41. 41.
    C. G. P. Mathew, G. H. Goodwin, T. Igo-Kemenes, and E. W. Johns, The protein composition of rat satellite chromatin, FEBS-Letters 125: 25–29 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    H. G. Zachau and T. Igo-Kemenes, Face to phase with nucleosomes, Cell 24:597–598 (1981).PubMedCrossRefGoogle Scholar
  43. 43.
    R. Kornberg, The location of nucleosomes in chromatin: specific or statistical? Nature 292:579–581 (1981).PubMedCrossRefGoogle Scholar
  44. 44.
    X. -Y. Zhang, F. Fittler, and W. Hörz, Eight different highly specific nucleosome phases on α-satellite DNA in the African Green Monkey, Nucl. Acids Res. 11:4287–4306 (1983).PubMedCrossRefGoogle Scholar
  45. 45.
    X. -Y. Zhang and W. Hörz, Nucleosomes are positioned on mouse satellite DNA in multiple highly specific frames that are correlated with a diverged subrepeat of 9 bp. J. Mol. Biol. 76:105–129 (1984).CrossRefGoogle Scholar
  46. 46.
    W. Pfeiffer, W. Hörz, T. Igo-Kemenes, and H. G. Zachau, Restriction nucleases as probes for chromatin structure, Nature 258:450–452 (1975).PubMedCrossRefGoogle Scholar
  47. 47.
    W. Hörz, T. Igo-Kemenes, W. Pfeiffer, and H. G. Zachau, Specific cleavage of chromatin by restriction nucleases, Nucl. Acids Res. 3:3213–3226 (1976).PubMedGoogle Scholar
  48. 48.
    H. Boeck, S. Abler, X.-Y. Zhang, H. Fritton, and T. Igo-Kemenes, positioning of nucleosomes in satellite I-containing chromatin of rat liver, J. Mol. Biol. 76:131–154 (1984).CrossRefGoogle Scholar
  49. 49.
    K. Moritz and G.E. Roth, Complexity of germ line and somatic DNA in Ascaris, Nature 259:55–57 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Tibor Igo-Kemenes
    • 1
  1. 1.Institut für Physiologische Chemie, Physikalische Biochemie und ZellbiologieUniversität MünchenMünchen 2Federal Republic of Germany

Personalised recommendations