Understanding Cancer — the Need for a Broad and Integrated Scientific Approach

  • Anne Brown
  • Sarah A. Bruce
  • Paul O. P. Ts’o
Part of the NATO ASI Series book series (NSSA, volume 98)


Understanding and controlling cancer is a challenge to science equal to the challenge of controlling hereditary disorders and understanding the aging process. Several aspects of the disease are considered in making such a comprehensive statement.


Somatic Mutation Long Terminal Repeat Neoplastic Transformation Syrian Hamster Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Silverberg, Cancer statistics, Ca. A Cancer Journal for Clinicians, 35:19 (1985).PubMedGoogle Scholar
  2. 2.
    A. Nordheim and A. Rich, Negatively supercoiled SV40 DNA contains Z DNA segments within transcriptoinal enhancer sequences, Nature 303:674 (1983).PubMedGoogle Scholar
  3. 3.
    S. Weisbrod, Active chromatin, Nature 297:289 (1982).PubMedGoogle Scholar
  4. 4.
    N. Hozumi, and S. Tonegawa, Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions, Proc. Natl. Acad. Sci. USA, 73:3628 (1976).PubMedGoogle Scholar
  5. 5.
    B. McClintock, The significance of responses of the genome to challenge, Science 226:792 (1984).PubMedGoogle Scholar
  6. 6.
    Symposia on Quantitative Biology”, Vol. 45, Part 2, The Cold Spring Harbor Laboratory, New York (1981).Google Scholar
  7. 7.
    R. Lewin, No genome barriers to promiscuous DNA, Science 224:970 (1984).PubMedGoogle Scholar
  8. 8.
    R. Lewin, Can genes jump between eukaryotic species? Science 217:42 (1982).PubMedGoogle Scholar
  9. 9.
    R. Jaenisch, Endogenous retroviruses, Cell 32:5 (1983).PubMedGoogle Scholar
  10. 10.
    Y. Chien, N. R. J. Gascoigne, J. Kavaler, N. E. Lee, and M. M. Davis, Somatic recombination in a murine T-cell receptor gene, Nature 309:322 (1984).PubMedGoogle Scholar
  11. 11.
    M. Bouteille, D. Bouvier, and A. P. Seve, Heterogeneity and territorial organization of the nuclear matrix and related structure, Int. Rev. Cyt. 83:135 (1983).Google Scholar
  12. 12.
    B. Vogelstein, D. M. Pardoll, D. S. Coffey, Supercoiled loops and eucaryotic DNA replication, Cell 22:79 (1980).PubMedGoogle Scholar
  13. 13.
    P. S. Miller, C. H. Agris, L. Aurelian, K. R. Blake, A. Murakami, M. P. Reddy, S. A. Spitz, and P. O. P. Ts’o, Control of ribonucleic acid function by oligonucleoside methylphosphonates, Biochimie, in press (1985).Google Scholar
  14. 14.
    M. D. Waterfield, G. T. Scrace, N. Whittle, P. Stroobant, A. Johnsson, A. Wasteson, B. Westermark, C. H. Heldin, J. S. Huang, and T. F. Deuel, Platelet-derived growth factor is structurally related to the putative transforming protein p28-sis of simian sarcoma virus, Nature 304:35 (1983).PubMedGoogle Scholar
  15. 15.
    Y. Sugimoto, M. Whitman, L. C. Cantley, and R. L. Erikson, Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol, Proc. Natl. Acad. Sci. USA 81: 2117 (1984).PubMedGoogle Scholar
  16. 16.
    I. G. Macara, G. V. Marinetti, and P. C. Balduzzi, Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: Possible role in tumor igenesis, Proc. Natl. Acad. Sci. USA 81:2728 (1984).PubMedGoogle Scholar
  17. 17.
    T. Boveri, “Zur Frage der Entstehung Maligner Tumoren,”, Fisher, Jena (1914).Google Scholar
  18. 18.
    J. German, ed., “Chromosomes and Cancer,” John Wiley and Sons, New York (1974).Google Scholar
  19. 19.
    A. G. Knudson, Mutation and human cancer, Adv. Cancer Res. 17:317 (1973).Google Scholar
  20. 20.
    B. N. Arnes, W. E. Durston, E. Yamasaki and F. D. Lee, Carcinogens are mutagens: A simple test system combing liver homogenates for activation and bacteria for detection, Proc. Natl. Acad. Sci. USA 70:2281 (1973).Google Scholar
  21. 21.
    L. Foulds, “Neoplastic Development,” Volume 1, Academic Press, London (1969).Google Scholar
  22. 22.
    L. Foulds, “Neoplastic Development,” Volume 2, Academic Press, London (1975).Google Scholar
  23. 23.
    J. C. Barrett and P. O. P. Ts’o, Relationship between somatic mutation and neoplastic transformation, Proc. Natl. Acad. Sci. USA 75:3761 (1978).PubMedGoogle Scholar
  24. 24.
    P. M. Kraemer, G. L. Travis, F. A. Ray, and L. S. Cram, Spontaneous neoplastic evolution of Chinese hamster cells in culture: Multistep progression of phenotype, Cancer Res. 43:4822 (1983).PubMedGoogle Scholar
  25. 25.
    L. S. Cram, M. F. Bartholdi, F. A. Ray, G. L. Travis, and P. M. Kraemer, Spontaneous neoplastic evolution of Chinese hamster cells in culture: Multistep progression of karyotype, Cancer Res. 43:4828 (1983).PubMedGoogle Scholar
  26. 26.
    B. Mintz, Genetic mosaicism and in vivo analysis of neoplasia and differentiation, in: “Cell Differentiation and Neoplasia,” G.F. Saunders, ed., Raven Press, New York (1978).Google Scholar
  27. 27.
    J. C. Barrett, N. E. Bias and P. O. P. Ts’o, A mammalian cellular system for the concomitant study of neoplastic transformation and somatic mutation, Mutation Res. 50:121 (1978).PubMedGoogle Scholar
  28. 28.
    Y. Berwald and L. Sachs, In vitro cell transformation with chemical carcinogens, Nature 200:1182 (1963).PubMedGoogle Scholar
  29. 29.
    Y. Berwald and L. Sachs, In vitro transformation of normal cells to tumor cells by carcinogenic hydrocarbons. J. Natl. Cancer Inst. 35:641 (1965).PubMedGoogle Scholar
  30. 30.
    J. A. DiPaolo and P. J. Donovan, Properties of Syrian hamster cells transformed in the presence of carcinogenic hydrocarbons, Exptl. Cell Res. 48:361 (1967).PubMedGoogle Scholar
  31. 31.
    J. A. DiPaolo, P. Donovan and R. Nelson, Quantitative studies of in vitro transformation by chemical carcinogens, J. Natl. Cancer Inst. 42:867 (1969).PubMedGoogle Scholar
  32. 32.
    S. A. Bruce, S. F. Deamond, and P. O. P. Ts’o, In vitro senescence of Syrian hamster mesenchymal cells of fetal to aged adult origin. Inverse relationship between in vivo donor age and in vitro proliferative capacity, Mech. of Ageing and Devel., in press (1985).Google Scholar
  33. 33.
    J. C. Barrett, A preneoplastic stage in the spontaneous neoplastic transformation of Syrian hamster embryo cells in culture, Cancer Res. 40:91 (1980).PubMedGoogle Scholar
  34. 34.
    J. C. Barrett, T. Tsutsui and P. O. P. Ts’o, Neoplastic transformation induced by a direct perturbation of DNA, Nature 274:229 (1978).PubMedGoogle Scholar
  35. 35.
    T. Tsutsui, J. C. Barrett and P. O. P. Ts’o, Morphological transformation, DNA damage, and chromosomal aberrations induced by a direct DNA perturbation of synchronized Syrian hamster embryo cells, Cancer Res. 39:2356 (1979).PubMedGoogle Scholar
  36. 36.
    S. L. Lin, M. Takii and P. O. P. Ts’o, Somatic mutation and neoplastic transformation induced by [methyl-3H] thymidine, Radiation Res. 90:142 (1982).PubMedGoogle Scholar
  37. 37.
    M. Zajac-Kaye and P. O. P. Ts’o, DNAse I encapsulated in liposomes can induce neoplastic transformation of Syrian hamster embryo cells in culture, Cell 39:427 (1984).PubMedGoogle Scholar
  38. 38.
    J. C. Barrett and P. O. P. Ts’o, Evidence for the progressive nature of neoplastic transformation in vitro, Proc. Natl. Acad. Sci. USA 75:3761 (1978).PubMedGoogle Scholar
  39. 39.
    S. Nakano, S. A. Bruce, H. Ueo, and P. O. P., A qualitative and quantitative assay for cells lacking postconfluence inhibition of cell division: Characterization of this phenotype in carcinogen-treated Syrian hamster embryo cells in culture, Cancer Res. 42:3132 (1982).PubMedGoogle Scholar
  40. 40.
    J. C. Barrett, B. D. Crawford, L. O. Mixter, L. M. Schechtman, P. O. P. Ts’o and R. Pollack, Correlation of in vitro growth properties and tumorigenicity of Syrian hamster cell lines, Cancer Res. 39:1504 (1979).PubMedGoogle Scholar
  41. 41.
    B. D. Crawford, J. C. Barrett and P. O. P. Ts’o, Neoplastic conversion of pre-neoplastic Syrian hamster cells: Rate estimation by fluctuation analysis, Molec. and Cell. Biol. 3:931 (1983).Google Scholar
  42. 42.
    B. D. Crawford, Cellular and somatic genetic aspects of neoplastic transformation in vitro, Ph.D. Thesis, The Johns Hopkins University, Baltimore (1981).Google Scholar
  43. 43.
    A. R. Kinsella and M. Radman, Tumor promoter induces sister chromatid exchanges: Relevance to mechanisms of carcinogenesis, Proc. Natl. Natl. Acad. Sci. USA 75:6149 (1978).Google Scholar
  44. 44.
    D. Morry, Gene dosage dependence of mutation, cellular senescence and transformation related phenotypes, Ph.D. Thesis, The Johns Hopkins University, Baltimore (1980).Google Scholar
  45. 45.
    R. Moyzis, D. Grady, D. Li, S. Mirvis and P. Ts’o, Extensive homology of nuclear ribonucleic acid and polysomal poly(adenylic acid) messenger ribonucleic acid between normal and neoplastically transformed cells, Biochemistry 19:821 (1980).PubMedGoogle Scholar
  46. 46.
    J. C. Barrett, W. Wong and J. A. McLachlan, Diethylstilbesterol induces neoplastic transformation without measurable gene mutation at two loci. Science 212:1402 (1981).PubMedGoogle Scholar
  47. 47.
    J. A. Dipaolo, A. J. DeMarinis and J. Doniger, Neoplastic transformation of Syrian hamster embryo cells by bisulfite is accompanied with a decrease in the number of functioning replicons, Cancer Lett. 12:203 (1981).PubMedGoogle Scholar
  48. 48.
    K. K. Gyi, Non-mutational induction of transformation-associated phenotypes in Syrian hamster fibroblasts by L-ethionine, Proc. Amer. Assoc. for Cancer Res. 23:77 (1982).Google Scholar
  49. 49.
    T. Tsutsui, H. Maizumi and J. C. Barrett, Colcemid-induced neoplastic transformation without and aneuploidy in Syrian hamster embryo cells, Carcinogenesis 5:89 (1984).PubMedGoogle Scholar
  50. 50.
    T. Tsutsui, H. Maizumi, J. A. McLachlan and J. C. Barrett, Aneuploidy induction and cell transformation by diethylstilbesterol: A possible chromosome mechanism in carcinogenesis, Cancer Res. 43:3814 (1983).PubMedGoogle Scholar
  51. 51.
    Genes, Chromosomes, and Neoplasia,” F. E. Arrighi, P. N. Rao, and E. Stubblefield, eds., Raven Press, New York, (1980).Google Scholar
  52. 52.
    Precancerous States,” R. L. Carter, ed., Oxford University Press, London (1984).Google Scholar
  53. 53.
    J. J. Yunis The chromosomal basis of human neoplasia, Science 221:227 (1983).PubMedGoogle Scholar
  54. 54.
    J. D. Rowley, Biological implications of consistent chromosome rearrangements in leukemia and lymphoma, Cancer Res. 44:3159 (1984).PubMedGoogle Scholar
  55. 55.
    N. B. Atkin, Cytogenetic studies on human tumors and premalignant lesions: The emergence of aneuploid cell lines and their relationship to the process of malignant transformation in man, in: “Genetic Concepts and Neoplasia, Williams and Wilkins Co., Baltimore (1970).Google Scholar
  56. 56.
    P. E. Barker, Double minutes in human tumor cells, Cane. Genet. Cytogenet. 5:81 (1982).Google Scholar
  57. 57.
    G. R. Stark and G. M. Wahl, Gene amplification, Ann. Rev. Biochem. 53:447 (1984).PubMedGoogle Scholar
  58. 58.
    G. Balaban and F. Gilbert, Homogeneously staining regions in direct preparations from human neuroblastomas, Cancer Res. 42:1838 (1982).PubMedGoogle Scholar
  59. 59.
    A. Levan, G. Levan and F. Mitelman, Chromosomes and cancer, Hereditas 86:15 (1977).PubMedGoogle Scholar
  60. 60.
    F. Mitelman, Restricted number of chromosomal regions implicated in aetiology of human cancer and leukemia, Nature 310:325 (1984).PubMedGoogle Scholar
  61. 61.
    M. Schwab, K. Alitalo, K. H. Klempnauer, H. E. Varmus, J. M. Bishop, F. Gilbert, G. Brodeur, M. Goldstein, and J. Trent, Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumor, Nature 305:245 (1983).PubMedGoogle Scholar
  62. 62.
    N. E. Kohl, N. Kanda, R. R. Schreck, G. Bruns, S. A. Latt, F. Gilbert and F. W. Alt, Transposition and amplification of oncogene-related sequences in human neuroblastomas, Cell 35:359 (1983).PubMedGoogle Scholar
  63. 63.
    W. H. Lee, A. L. Murphree, and W. F. Benedict, Expression and amplification of the N-myc gene in primary retinoblastoma, Nature 309:458 (1984).PubMedGoogle Scholar
  64. 64.
    J. D. Rowley, Human oncogene locations and chromosome aberrations, Nature 301: 290 (1983).PubMedGoogle Scholar
  65. 65.
    A. Varshavsky, On the possibility of metabolic control of replicon “misfiring”: Relationship to emergence of malignant phenotypes in mammalian cell lineages, Proc. Natl. Acad. Sci. USA 78:3673 (1981).PubMedGoogle Scholar
  66. 66.
    W. W. Nichols, Viral interactions with the mammalian genome relevant to neoplasia in: “Chromosome Mutation and Neoplasia, J. German, ed., Alan R. Liss, Inc., New York (1983).Google Scholar
  67. 67.
    M. P. Calos and J. H. Miller, Transposable elements, Cell 20:579 (1980).PubMedGoogle Scholar
  68. 68.
    P. Nevers and H. Saedler, Transposable genetic elements as agents of gene instability and chromosomal rearrangements, Nature 268:109 (1977).PubMedGoogle Scholar
  69. 69.
    M. M. Green, Genetic instability in Drosophila melangaster: Deletion induction by insertion sequences, Proc. Natl. Acad. Sci. USA 79:5367 (1982).PubMedGoogle Scholar
  70. 70.
    W. McGinnis and S. K. Beckendorf, Association of Drosophila transposable element of the Roo family with chromosomal deletion breakpoints, Nucleic Acids Res. 11:737 (1983).PubMedGoogle Scholar
  71. 71.
    G. S. Roeder, P. J. Farabaugh, O. T. Chaleff, and G. R. Fink, The origins of gene instability in yeast, Science 209:1375 (1980).PubMedGoogle Scholar
  72. 72.
    B. Calabretta, D. L. Robberson, H. A. Barrera-Saldana, T. P. Lambron, and G. F. Saunders, Genome instability in a region of human DNA enriched in Alu repeat sequences, Nature 296:219 (1982).PubMedGoogle Scholar
  73. 73.
    W. R. Engels and C. R. Preston, Identifying P factors in Drosophila by means of chromosome breakage hotspots, Cell 26:421 (1981).PubMedGoogle Scholar
  74. 74.
    G. W. Schmid and W. R. Jelinek, The Alu family of dispersed repetitive sequences, Science 216:1065 (1982).PubMedGoogle Scholar
  75. 75.
    M. F. Singer, SINES and LINES: Highly repeated short and long interspersed sequences in mammalian genomes, Cell 28:433 (1982).PubMedGoogle Scholar
  76. 76.
    R. A. Weinberg, Origins and roles and endogenous retroviruses, Cell 22:643 (1980).PubMedGoogle Scholar
  77. 77.
    H. M. Temin, Origin of retroviruses from cellular moveable genetic elements, Cell 21:599 (1980).PubMedGoogle Scholar
  78. 78.
    K. J. McCormick and J. J. Trenton, Tumor-associated viruses of the Syrian hamster, Prog. Exp. Tumor Res. 23:13 (1979).Google Scholar
  79. 79.
    F. Kelly and H. Condamine, Tumor viruses and early mouse embryos, Biochim. Biophys. Acta 651:105 (1982).PubMedGoogle Scholar
  80. 80.
    W. Bernhard, Electron microscopy of tumor cells and tumor viruses, Cancer Res. 18:491 (1958).PubMedGoogle Scholar
  81. 81.
    Y. Ohtsuki, G. Seman, L. Dmochowski, J. M. Bowen and D. E. Johnson, Virus-like particles in a case of human prostate carcinoma, J. Natl. Cancer Inst. 58: 1493 (1977).PubMedGoogle Scholar
  82. 82.
    W. S. Hayward, B. G. Neel and S. M. Astrin, Activation of cellular one gene by promoter insertion in ALV-induced lymphoid leukosis, Nature 290; 475 (1981).PubMedGoogle Scholar
  83. 83.
    E. Canaani, O. Dreazen, A. Klar, G. Rechavi, G. Ram, J. B. Cohen, and D. Givol, Activation of the c-mos oncogene in a mouse plasmacytoma by insertion of an endogenous intracisternal A-particle gene, Proc. Natl. Acad. Sci. USA 80:7118 (1983).PubMedGoogle Scholar
  84. 84.
    I. B. Weinstein, S. Gattoni-Celli, P. Kirschmeier, M. Lambert, W. Hsiao, J. Backer, and A. Jeffrey, Multistage carcinogenesis involves multiple genes and multiple mechanisms, in; “Cancer Cells/1 The Transformed Phenotype,” A.J. Levine, G.F. Vande Woude, W.C. Topp, and J.D. Watson, eds., Cold Spring Harbor Laboratories, New York (1984).Google Scholar
  85. 85.
    A. B. Rabson, P. E. Stelle, C. F. Garon, M. A. Martin, mRNA transcripts related to full-length endogenous retroviral DNA in human cells, Nature 306:604 (1983).PubMedGoogle Scholar
  86. 86.
    S. S. Potter. Rearrangement sequences of a human Kpn I element, Proc. Natl. Acad. Sci. USA 81:1012 (1984).PubMedGoogle Scholar
  87. 87.
    C. D. O’Connell and M. Cohen, The long terminal repeat sequences of a novel human endogenous retrovirus, Science 226: 1204 (1984).PubMedGoogle Scholar
  88. 88.
    L. Sachs, Normal development programmes in myeloid leukaemia: Regulatory proteins in the control of growth and differentiation, Cancer Survey, Vol. 1, (1982).Google Scholar
  89. 89.
    S. Nakano and P. O. P. Ts’o, Cellular differentiation and neoplasia: Characterization of subpopulations of cells that have neoplasia-related growth properties in Syrian hamster embryo cell cultures, Proc. Natl. Acad. Sci. USA 78:4995 (1981).PubMedGoogle Scholar
  90. 90.
    H. Ueo, S. A. Bruce, S. Nakano and P. O. P. Ts’o, Tumor promoters retard the loss of a transient subpopulation of cells in low passage Syrian hamster fetal cell cultures and extend the in vitro proliferative life span of the cultures, J. Cell Physiol., in press (1985).Google Scholar
  91. 91.
    S. Bruce, S. Deamond, H. Ueo and P. O. P. Ts’o, Age-related differences in promoter-induced extension of in vitro lifespan of Syrian hamster cells, J. Cell Biol. 97:346a (1983).Google Scholar
  92. 92.
    S. Nakano, H. Ueo, S. A. Bruce and P. O. P. Ts’o, A contact-insensitve subpopulation in Syrian hamster cell cultures with a greater susceptibility to chemically induced neoplastic transformation, Proc. Natl. Acad. Sci. USA, in press (1985).Google Scholar
  93. 93.
    C. C. Boyer, Embryology, in: “The Golden Hamster”, R.A. Hoffman, P.F. Robinson and H. Magalhaes, eds., Iowa State Press, Ames (1968).Google Scholar
  94. 94.
    S. A. Bruce, K. K. Gyi, S. Nakano, H. Ueo, M. Zajac-Kaye and P. O. P. Ts’o, Genetic and developmental determinants in neoplastic transformation, in: “Biochemical Basis of Chemical Carcinogenesis,” H. Greim, R. Jung, M. Kramer, H. Marquardt and F. Oesch, eds., Raven Press, New York, (1984).Google Scholar
  95. 95.
    T. Okeda, S. A. Bruce, M. A. Bury and P. O. P. Ts’o, Tumor promoters and epidermal growth factors increase the frequency of conversion of Syrian hamster embryonic cell cultures to permanent progenitor cell lines, Manuscript in preparation.Google Scholar
  96. 96.
    T. Okeda, H. Ueo, Y. Yokogawa, S. A. Bruce, M. A. Bury, and P. O. P. Ts’o, Characterization of an establshed pre-adipocyte Syrian hamster embryonic cell line, Manuscript in preparation.Google Scholar
  97. 97.
    H. Temin, On the origin of the genes for neoplasia, Cancer Res. 34:2835 (1974).PubMedGoogle Scholar
  98. 98.
    P. H. Duesberg, Retroviral transforming genes in normal cells, Nature 304:219 (1983).PubMedGoogle Scholar
  99. 99.
    B. G. Neel, W. S. Hayward, H. L. Robinson, J. Fang and S. M. Astrin, Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: Oncogenesis by promoter insertion, Cell 23:323 (1981).PubMedGoogle Scholar
  100. 100.
    Y. T. K. Fung, W. G. Lewis L. B. Crittenden, H. J. Kung, Activation of the cellular oncogene c-erb B by LTR insertion: Molecular basis for induction of erythroblastosis by avian leukosis virus, Cell 33:357 (1983).PubMedGoogle Scholar
  101. 101.
    R. Nusse, A. Ooyen, D. Cox, Y. K. T. Fung, and H. Varmus, Mode of proviral activation of a putative mammany oncogene (int-1) on mouse chromosome 15, Nature 307:131 (1984).PubMedGoogle Scholar
  102. 102.
    C. D. Dickson, R. Smith, S. Brookes, and G. Peters, Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region int-2, Cell 37:529 (1984).PubMedGoogle Scholar
  103. 103.
    G. L. C. Shen-Ong, M. Potter, J. F. Mushinski, S. Lavu and E. P. Reddy, Activation of the c-myb locus by viral insertional mutagenesis in plasmacytoid lymphosarcomas, Science 226:1077 (1984).PubMedGoogle Scholar
  104. 104.
    C. J. Der, T. G. Krontiris, and G. M. Cooper, Transforming genes of human bladder and lung carcinoma cells lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses, Proc. Natl. Acad. Sci. USA 79:3637 (1982).PubMedGoogle Scholar
  105. 105.
    G. M. Cooper, Cellular transforming genes, Science 218:801 (1982).Google Scholar
  106. 106.
    L. A. Feig, R. C. Bast, P. C. Knapp and G. M. Cooper, Somatic activation of ras gene in a human ovarian carcinoma, Science 223:698 (1984).PubMedGoogle Scholar
  107. 107.
    J. Fujita, O. Yoshida, Y. Yuasa, J. S. Rhim, M. Hatanaka, and S. A. Aaronson, Ha-ras oncogenes are activated by somatic alterations in human urinary tract tumors, Nature 309:464 (1984).PubMedGoogle Scholar
  108. 108.
    I. Guerrero, A. Vilasante, V. Corces, and A. Pellicer, Activation of a c-K-ras oncogene by somatic mutation in mouse lymphomas induced by gamma radiation, Science 225:1159 (1984).PubMedGoogle Scholar
  109. 109.
    S. H. Orkin, O. S. Goldman, and S. E. Sallan, Development of homozygosity for chromosome 11p markers in Wilms’ tumor, Nature 309:172 (1984).PubMedGoogle Scholar
  110. 110.
    E. R. Fearon, B. Vogelstein, and A. P. Feinberg, Somatic deletion and duplication of genes on chromosome 11 in Wilms’ tumours, Nature 309:176 (1984).PubMedGoogle Scholar
  111. 111.
    J. Downward, Y. Yarden, E. Mayes, G. Scrace, N. Totty, P. Stockwell, A. Ullrich, J. Schlessinger, and M.D. Waterfield, Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences, Nature 307:521 (1984).PubMedGoogle Scholar
  112. 112.
    T. Hunter and P. M. Sefton, Transforming gene product of Rous sarcoma virus phosphorylates tyrosine, Proc. Natl. Acad. Sci. USA 77:1311 (1980).PubMedGoogle Scholar
  113. 113.
    M. B. Sporn and G. J. Todaro, Autocrine secretion and malignant transformation of cells, New Engl. J. Med. 303:878 (1980).PubMedGoogle Scholar
  114. 114.
    H. Ushiro and S. Cohen, Identification of phosphotyrosine as a product of epidermal growth factor — activated protein kinase in A-431 cell membranes. J. Biol. Chem. 255:8363 (1980).PubMedGoogle Scholar
  115. 115.
    J. A. Cooper, D. F. Bowen-Pope, E. Raines, R. Ross, and T. Hunter, Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins, Cell 31:263 (1982).PubMedGoogle Scholar
  116. 116.
    B. Ek and C. H. Heldin, Characterization of a tyrosine-s pecifie kinase activity in human fibroblast membranes stimulated by platelet-derived growth factor, J. Biol. Chem. 257:10486 (1982).PubMedGoogle Scholar
  117. 117.
    J. Nishimura, J. S. Huang, and T. F. Deuel, Platelet-derived growth factor stimulates tyrosine-specific protein kinase activity in Swiss mouse 3T3 cell membranes, Proc. Natl. Acad. Sci. USA 79:4303 (1982).PubMedGoogle Scholar
  118. 118.
    J. M. Hutson, M. E. Fallat, S. Kamagata, P. K. Donahoe, and G. P. Budzik, Phosphorylation events during Mullerian duct regression, Science 223:586 (1984).PubMedGoogle Scholar
  119. 119.
    J. L. Marx, Oncogene linked to cell regulatory system, Science 226:527 (1984).PubMedGoogle Scholar
  120. 120.
    J. B. Hurley, M. I. Simon, D. B. Teplow, J. D. Robishaw and A. G. Gilman, Homologies between signal transducing G proteins and ras gene products, Science 226:860 (1984).PubMedGoogle Scholar
  121. 121.
    F. L. Graham and A. Van der Eb, A new technique for the assay of human adenovirus 5 DNA, Virology 52:456 (1973).PubMedGoogle Scholar
  122. 122.
    M. Wigler, A. Pellicer, S. Silverstein, and R. Axel, Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor, Cell 14:725 (1978).PubMedGoogle Scholar
  123. 123.
    C. Shih, B. Shilo, M. P. Goldfarb, A. Dannenberg and R. A. Weinberg, Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin, Proc. Natl. Acad. Sci. USA 76:5714 (1979).PubMedGoogle Scholar
  124. 124.
    G. Klein, The role of gene dosage and genetic transpositions in carcinogenesis, Nature 294:313 (1981).PubMedGoogle Scholar
  125. 125.
    R. F. Newbold and R. W. Overell, Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras Oncogene, Nature 304:648 (1983).PubMedGoogle Scholar
  126. 126.
    H. Land, L. F. Parada and R. A. Weinberg, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature 304:596 (1983).PubMedGoogle Scholar
  127. 127.
    H. E. Ruley, Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture, Nature 304:602 (1983).PubMedGoogle Scholar
  128. 128.
    T. A. Stewart, P. K. Pattingale, and P. Leder, Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes, Cell 38:627 (1984).PubMedGoogle Scholar
  129. 129.
    J. R. Shapiro, W. K. A. Yung, and W. R. Shapiro, Isolation, karyotype and clonal growth of heterogeneous subpopulations of human malignant gliomas, Cancer Res. 41:2349 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Anne Brown
    • 1
  • Sarah A. Bruce
    • 1
  • Paul O. P. Ts’o
    • 1
  1. 1.Division of Biophysics, School of Hygiene and Public HealthThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations