Hydrodynamics, Thermodynamics and Scattering Properties: Nucleic Acids, Nucleosomes and Chromatin

  • Henryk Eisenberg
Part of the NATO ASI Series book series (NSSA, volume 98)


Though the progress of both experimental and theoretical chemistry has been steady since the eighteenth century, it was only in our lifetime that the nature of the macromolecular state was clearly established. Until about fifty years ago it was generally believed that large, covalently bonded, well defined macromolecules do not exist, and only ill-defined colloidal structures and complexes are formed1. Thus DNA, known since 1869, was considered to be a colloidal aggregate of tetranucleotides of unknown structure and function2. Once the basic principle was recognized that various atoms (such as carbon, nitrogen, oxygen, phosphorous and others) can join to form long chains, the macromolecular state could be defined and studied. The very important functional properties of biological macromolecules were quickly recognized and the classical contribution of Watson and Crick3 provided the link between structure and function. Today we again stand at the threshold of a major revolution. We are witnessing the possibility to interfere with genetic, developmental and regulatory features of the biological machinery, in which macromolecules play a major role4.


Core Particle Persistence Length High Order Structure Equilibrium Sedimentation Partial Specific Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, Ithaca (1953).Google Scholar
  2. 2.
    A. Kornberg, “DNA Replication,” W.H. W. H. Freeman and Company, San Francisco (1980).Google Scholar
  3. 3.
    J. D. Watson and F. H. C. Crick, Molecular structure of nucleic acids, Nature 171:737 (1953).PubMedCrossRefGoogle Scholar
  4. 4.
    Recombinant DNA, Science 209:]3]7-]438 (1980).Google Scholar
  5. 5.
    Structures of DNA, Cold Spring Harbor Symposium on Quantitative Biology, Vol. 47, Cold Spring Harbor, New York (1982).Google Scholar
  6. 6.
    Chromatin, Cold Spring Harbor Symposium on Quantitative Biology, Vol. 42, Cold Spring Harbor, New York (1977).Google Scholar
  7. 7.
    J. T. Finch and A. Klug, Solenoidal model for superstructure in chromatin, Proc. Natl. Acad. Sci. USA 73:1897–1901 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Eisenberg, “Solutions of Biological Macromolecules and Polyelectrolytes,” Clarendon Press, Oxford (1976).Google Scholar
  9. 9.
    G. S. Manning, The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Q. Rev. Biophys. 11:179–246 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    M. T. Record, Jr., C. F. Anderson, and T. M. Lohman, Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: The roles of ion association on release, screening, and ion effects on water activity, Q. Rev. Biophys. 11:103–178 (1978).PubMedCrossRefGoogle Scholar
  11. G. Porod, X-ray and light scattering by chain molecules in solution, J. Polymer Sci. 10:157–167 (1953).CrossRefGoogle Scholar
  12. 12.
    O. Kratky and G. Porod, X-ray investigation of dissolved chain molecules, Rec. Trav. Chim. Pays-Bas. 68:1106–1122 (1949).CrossRefGoogle Scholar
  13. 13.
    H. Eisenberg, Light scattering and some aspects of small angle X-ray scattering, in: “Procedures in Nucleic Acid Research,” Volume 2, G. L. Cantoni and D. R. Davies, eds., Harper and Row, New York, pp. 137–175 (1971).Google Scholar
  14. 14.
    P.J. Flory, “Statistical Mechanics of Chain Molecules,” Interscience Publishers, New York, pp. 401–403 (1969).Google Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz, “Statistical Physics,” Pergamon Press, London, pp. 478–482 (1959).Google Scholar
  16. 16.
    H. Benoit and P. Doty, Light scattering from non Gaussian chains, J. Phys. Chem. 57:958–963 (1953).CrossRefGoogle Scholar
  17. 17.
    Z. Kam, N. Borochov, and H. Eisenberg, Dependence of laser light scattering of DNA on NaCl concentration, Biopolymers 20:2671–2690 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Eisenberg and G. Felsenfeld, Studies of the temperature dependent conformation and phase separation of polyriboadenylic acid solutions at neutral pH, J. Mol. Biol. 30:17–37 (1967).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper and Row, New York, pp. 372–379 (1971).Google Scholar
  20. 20.
    N. Borochov, H. Eisenberg, and Z. Kam, Dependence of DNA conformation on the concentration of salt, Biopolymers 20:231–235 (1981).CrossRefGoogle Scholar
  21. 21.
    G. S. Manning, A procedure for extracting persistence lengths from light scattering data on intermediate molecular weight DNA, Biopolymers 20:1751–1755 (1981).CrossRefGoogle Scholar
  22. 22.
    C. B. Post, Excluded volume of an intermediate molecular weight DNA. A Monte Carlo analysis, Biopolymers 22:1087–1096 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    N. Borochov and H. Eisenberg, Conformation of LiDNA in solutions of LiCl, Biopolymers 23:1757–1769 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    B. Wolf, S. Berman, and S. Hanlon, Structural transitions of calf thymus DNA in concentrated LiCl solution, Biochemistry 16:3655–3662 (1977).PubMedCrossRefGoogle Scholar
  25. 25.
    S. B. Zimmerman and B. H. Pheiffer, Does DNA adopt the C form in concentrated salt solutions or in organic solvent/water mixtures? An X-ray diffraction study of fibers immersed in various media. J. Mol. Biol. 142:315–330 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Eisenberg, Hydrodynamic and thermodynamic studies, in: “Basic Principles in Nucleic Acid Chemistry,” Volume 2, Paul O. P. Ts’o, ed., Academic Press, New York, pp. 171–264 (1974).Google Scholar
  27. 27.
    H. Eisenberg, On the inherent flexibility of DNA chains, Biopolymers 8:545–551 (1969).CrossRefGoogle Scholar
  28. 28.
    J. E. Godfrey and H. Eisenberg, The flexibility of low molecular weight double stranded DNA as a function of length, Biophysical Chem. 5:301–318 (1976).CrossRefGoogle Scholar
  29. 29.
    G. Voordouw, Z. Kam, N. Borochov, and H. Eisenberg, Isolation and physical studies of the intact supercoiled, the open circular and the linear forms of Col E1 plasmid DNA, Biophysical Chem. 8:171–189 (1978).CrossRefGoogle Scholar
  30. 30.
    H. Eisenberg, Forward scattering of light, X-rays and neutrons, Q. Rev. Biophys. 14:141–172 (1981).PubMedCrossRefGoogle Scholar
  31. 31.
    E. Reisler, Y. Haik, and H. Eisenberg, Bovine serum albumin in aqueous guanidine hydrochloride solutions. Preferential and absolute interactions and comparison with other systems, Biochemistry 16:197–203 (1977).PubMedCrossRefGoogle Scholar
  32. 32.
    G. Cohen and H. Eisenberg, Deoxyribonucleate solutions: sedimentation in a density gradient, partial specific volumes, density and refractive index increments, and preferential interactions, Biopolymers 6:1077–1100 (1968).PubMedCrossRefGoogle Scholar
  33. 33.
    M. L. Kopka, A. V. Fratini, H. R. Drew, and R. E. Dickerson, Ordered water structure around a B-DNA dodecamer, J. Mol. Biol. 163:129–146 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    H. Eisenberg and G. Felsenfeld, Hydrodynamic studies of the interaction between nucleosome core particles and core histones, J. Mol. Biol. 150: 537–555 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    K. O. Greulich, J. Ausio, and H. Eisenberg, J. Mol. Biol., submitted.Google Scholar
  36. 36.
    J. Ausio, D. Seger, and H. Eisenberg, Nucleosome core particle stability and conformational change: effect of temperature, particle and NaCl concentration, corsslinking of H3 histone sulfhydryl groups. J. Mol. Biol. 176:77–104 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Stein, DNA folding by histones: The kinetics of chromatin core particles reassembly and the interaction of nucleosomes with histones, J. Mol. Biol. 130:103–134 (1979).PubMedCrossRefGoogle Scholar
  38. 38.
    M. Reich, Small angle X-ray scattering from biological macromolecules, Thesis, The Weizmann Institute of Science, Rehovot (1982).Google Scholar
  39. 39.
    P. D. Cary, T. Moss, and E. M. Bradbury, High resolution protonmagnetic-resonance studies of chromatin core particles, Eur. J. Biochem. 89:475–482 (1978).PubMedCrossRefGoogle Scholar
  40. 40.
    J. R. Pardon, D. L. Worcester, J. C. Wooley, K. Tatchell, K. E. van Holde, and B. M. Richards, Low angle neutron scattering from chromatin subunit particles, Nucl. Acids Res. 2:2163–2176 (1975).PubMedCrossRefGoogle Scholar
  41. 41.
    P. Suau, G. G. Kneale, G. W. Braddock, J. P. Baldwin, and E. M. Bradbury, A low resolution model for the chromatin core particle by neutron scattering, Nucl. Acids Res. 4:3769–3786 (1977).PubMedCrossRefGoogle Scholar
  42. 42.
    J. T. Finch, L. C. Lutter, D. Rhodes, R. S. Brown, B. Rushton, M. Levitt, and A. Klug, Structure of nucleosome core particles of chromatin, Nature 269:29–36 (1977).PubMedCrossRefGoogle Scholar
  43. 43.
    J. Ausio, N. Borochov, D. Seger, and H. Eisenberg, Interaction of chromatin with NaCl and MgCl2, solubility and binding studies, transition to, and characterization of the higher order structure, J. Mol. Biol. 177:373–398 (1984).PubMedCrossRefGoogle Scholar
  44. 44.
    K. O. Greulich, E. Wachtel, J. Ausio, D. Seger and H. Eisenberg, in preparation.Google Scholar
  45. 45.
    N. Borochov, J. Ausio, and H. Eisenberg, Interaction and conformational changes of chromatin with divalent ions, Nucl. Acids Res. 12: 3089–3096 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Henryk Eisenberg
    • 1
  1. 1.Polymer Research DepartmentThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations