Advertisement

The Use of a Vector Computer in Ab-Initio Phonon Calculations in Semiconductors

  • P. E. Van Camp
  • J. T. Devreese

Abstract

There are two ab-initio methods for the calculation of the phonon frequencies of solids: 1) the total energy difference method [1], where the energy difference between the distorted and the undistorted crystal is calculated directly, and 2) the dielectric screening method [2].

Keywords

Local Density Approximation Phonon Frequency Hamiltonian Matrix Dynamical Matrix Reciprocal Lattice Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.T. Yin and M.L. Cohen, Phys. Rev. Lett. 45: 1004 (1980);CrossRefGoogle Scholar
  2. M.T. Yin and M.L. Cohen, Phys. Rev. B25: 4317 (1982).CrossRefGoogle Scholar
  3. R.M. Martin and K. Kunc, in: “Ab-Initio Calculation of Phonon Spectra”, J.T. Devreese, V.E. Van Doren, P.E. Van Camp, eds., Plenum Press, New York (1983), p. 49.CrossRefGoogle Scholar
  4. [2]
    R.M. Pick, M.H. Cohen and R.M. Martin, Phys. Rev. B2: 910 (1970).Google Scholar
  5. P.E. Van Camp, V.E. Van Doren and J.T. Devreese, in: “Ab-Initio Calculation of Phonon Spectra”, J.T. Devreese, V.E. Van Doren, P.E. Van Camp, eds., Plenum Press, New York (1983), p. 25.CrossRefGoogle Scholar
  6. [3]
    P.E. Van Camp, V.E. Van Doren and J.T. Devreese, Phys. Rev. Lett. 42: 1224 (1979);CrossRefGoogle Scholar
  7. P.E. Van Camp, V.E. Van Doren and J.T. Devreese, Phys. Stat. Sol. (b) 93: 483 (1979).CrossRefGoogle Scholar
  8. [4]
    W. Kohn and L.J. Sham, Phys. Rev. 140: A1133 (1965)CrossRefGoogle Scholar
  9. [5]
    P.E. Van Camp, V.E. Van Doren and J.T. Devreese, Phys. Rev. B24: 1096 (1981).Google Scholar
  10. [6]
    J.C. Slater, Phys. Rev. 81: 385 (1951).CrossRefGoogle Scholar
  11. [7]
    E.P. Wigner, Phys. Rev. 46: 1002 (1934).CrossRefGoogle Scholar
  12. [8]
    D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45: 566 (1980).CrossRefGoogle Scholar
  13. [9]
    F.A. Johnson, Proc. Roy. Soc. A310: 101 (1969).CrossRefGoogle Scholar
  14. [10]
    P.E. Van Camp, V.E. Van Doren and J.T. Devreese, Phys. Stat. Sol. (b) 110: K133 (1982).CrossRefGoogle Scholar
  15. [11]
    P.E. Van Camp, V.E. Van Doren and J.T. Devreese, unpublished results.Google Scholar
  16. [12]
    M. Schlüter, J.R. Chelikowsky, S. Louie and M.L. Cohen, Phys. Rev. B12: 4200 (1975).CrossRefGoogle Scholar
  17. [13]
    W. Topp and J. Hopfield, Phys. Rev. B7: 1295 (1973).CrossRefGoogle Scholar
  18. [14]
    J. Donahue, “The Structure of the Elements”, Wiley, New York (1972).Google Scholar
  19. [15]
    J. Ihm and M.L. Cohen, Phys. Rev. B21: 1527 (1980).CrossRefGoogle Scholar
  20. [16]
    V. Strassen, Num. Math. 19: 354 (1969).CrossRefGoogle Scholar
  21. [17]
    J.H. Wilkinson, “The Algebraic Eigenvalue Problem”, Oxford University Press, London (1965).Google Scholar
  22. [18]
    G. Nilson and G. Nelin, Phys. Rev. B6: 3777 (1972).CrossRefGoogle Scholar
  23. [19]
    P.E. Van Camp, V.E. Van Doren and J.T. Devreese, in: “Proceedings of the 6th General Conference ‘Trends in Physics’ of the European Physical Society, Prague”, J. Janta and J. Pantoflicek, eds. (1984), p. 486.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • P. E. Van Camp
    • 1
  • J. T. Devreese
    • 2
    • 3
  1. 1.University of Antwerp (RUCA)AntwerpenBelgium
  2. 2.Department of PhysicsUniversity of Antwerp (UIA)Antwerpen-WilrijkBelgium
  3. 3.University of TechnologyEindhovenThe Netherlands

Personalised recommendations