Advertisement

Calorimetry in High-Energy Physics

  • Christian W. Fabjan
Part of the NATO ASI Series book series (NSSB, volume 128)

Abstract

Much of our present knowledge about elementary particles has been established through a continuing refinement of techniques for measuring the trajectories of individual charged particles. Only in recent years has a different class of detectors—calorimeters—been widely employed, but these have already greatly influenced the scope of experiments.

Keywords

Energy Resolution Liquid Argon Hadron Calorimeter Radiation Length Electromagnetic Shower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V.S. Murzin, Progress in elementary particle and cosmic-ray physics, J.G. Wilson and I.A. Wouthuysen, eds., North Holland Publ. Co., Amsterdam (1967), Vol. 9, p. 247.Google Scholar
  2. [2]
    M. Atac, ed., Proc. Calorimeter Workshop, Batavia, 1975, FNAL, Batavia, Ill. (1975).Google Scholar
  3. [3]
    C.W. Fabjan and T. Ludlam, Ann. Rev. Nucl. Part. Sci. 32: 335 (1982).ADSGoogle Scholar
  4. [4]
    U. Amaldi, Phys. Scripta 23: 409 (1981).ADSGoogle Scholar
  5. [5]
    S. Iwata, Nagoya University report DPNU-3–79 (1979).Google Scholar
  6. [6]
    H. Messel and D.F. Crawford, Electron-photon shower distribution: Function tables for lead, copper and air absorbers, Pergamon Press, London (1970).Google Scholar
  7. [7]
    Y.S. Tsai, Rev. Mod. Phys. 46: 815 (1974).ADSGoogle Scholar
  8. [8]
    B. Rossi, High-energy particles, Prentice Hall, New York (1964).Google Scholar
  9. [9]
    E. Longo and I. Sestili, Nucl. Instrum. Methods 128: 283 (1975).ADSGoogle Scholar
  10. [10]
    H.H. Nagel, Z. Phys. 186: 319 (1965).ADSGoogle Scholar
  11. [11]
    D. F. Crawford and H. Messel, Phys. Rev. 128: 2352 (1962).ADSGoogle Scholar
  12. [12]
    Yu.D. Prokoshkin, Proc. Second ICFA Workshop on Possibilities and Limitations of Accelerators and Detectors, Les Diablerets, 1979, U. Amaldi, ed., CERN, Geneva (1980), p. 405.Google Scholar
  13. [13]
    E.B. Hughes et al., IEEE Trans. Nucl. Sci. NS-19: 126 (1972).Google Scholar
  14. [14]
    H.G. Fischer, Nucl. Instrum. Methods 156: 81 (1978).ADSGoogle Scholar
  15. [15]
    R.W. Sternheimer et al., Phys. Rev. B3: 3681 (1971).ADSGoogle Scholar
  16. [16]
    K. Pinkau, Phys. Rev. B139: 1548 (1965).ADSGoogle Scholar
  17. [17]
    T. Yuda, Nucl. Instrum. Methods 73: 301 (1969).ADSGoogle Scholar
  18. [18]
    C.J. Crannel, Phys. Rev. 182: 1435 (1969).ADSGoogle Scholar
  19. [19]
    T. Kondo et al., A simulation of electromagnetic showers in iron-lead and uranium-liquid argon calorimeters using the EGS, and its implication for e/h ratios in hadron calorimetry, contributed paper to the Summer Study on the Design and Utilization of the Superconducting Super Collider, Snowmass, Colo. (1984).Google Scholar
  20. [20]
    G.A. Akopdjanov et al., Nucl. Instrum. Methods 146:441 (1977). S.R. Amendolia et al., Pisa 80–4. R. Rameika et al., Measurement of electromagnetic shower position and size with a saturated avalanche tube hodoscope and a fine grained scintillator hodoscope, to be published in Nucl. Instrum. Methods.Google Scholar
  21. [21]
    T. Kondo and K. Niwa, Electromagnetic shower size and containment at high energies, contributed paper to the Summer Study on the Design and Utilization of the Superconducting Super Collider, Snowmass, Colo. (1984).Google Scholar
  22. [22]
    E. Gabathuler et al., Nucl. Instrum. Methods 157: 47 (1978).ADSGoogle Scholar
  23. [23]
    A.N. Diddens et al., Nucl. Instrum. Methods 178: 27 (1980).ADSGoogle Scholar
  24. [24]
    D. Bogert et al., IEEE Trans. Nucl. NS-29: 336 (1982).Google Scholar
  25. [25]
    J. Ranft, Particle Accelerators 3: 129 (1972).Google Scholar
  26. A. Baroncelli, Nucl. Instrum. Methods 118: 445 (1974).ADSGoogle Scholar
  27. T.A. Gabriel et al., Nucl. Instrum. Methods 134: 271 (1976).ADSGoogle Scholar
  28. [26]
    R. Bock et al., Nucl. Instrum. Methods 186: 533 (1981).ADSGoogle Scholar
  29. [27]
    C.W. Fabjan and W.J. Willis, Proc. Calorimeter Workshop, Batavia, 1975, M. Atac ed., FNAL, Batavia, Ill. (1975), p. 1.Google Scholar
  30. C.W. Fabjan et al., Phys. Lett. 60B: 105 (1975).Google Scholar
  31. [28]
    O. Botner, Phys. Scripta 23: 555 (1981).ADSGoogle Scholar
  32. [29]
    A. Benvenuti et al., Nucl. Instrum. Methods 125: 447 (1975).ADSGoogle Scholar
  33. [30]
    M.J. Corden et al., Phys. Scripta 25: 5 (1982).ADSGoogle Scholar
  34. [31]
    A. Beer et al., Nucl. Instrum. Methods 224: 360 (1984).Google Scholar
  35. [32]
    T. Akesson et al., Properties of a fine sampling uranium-copper scintillator hadron calorimeter, submitted to Nucl. Instrum. Methods (1985).Google Scholar
  36. [33]
    T. Gabriel and W. Selove, private communication.Google Scholar
  37. [34]
    U. Amaldi and G. Matthiae, private communications.Google Scholar
  38. [35] H. Abramowicz et al., Nucl. Instrum. Methods 180:429 (1981).
    See also, for earlier work, J.P. Rishan, SLAC 216 (1979).Google Scholar
  39. [36]
    Results similar to those given in [35] were recently obtained by the WA78 Collaboration at the CERN SPS (P. Pistilli, private communication).Google Scholar
  40. [37]
    C.W. Fabjan et al., Nucl. Instrum. Methods 141: 61 (1977).ADSGoogle Scholar
  41. [38]
    W.J. Willis, Invited talk given at the Discussion Meeting on HERA Experiments, Genoa (1984).Google Scholar
  42. [39]
    T. Akesson et al., Proc. ECFA-CERN Workshop on a Large Hadron Collider in the LEP Tunnel, Lausanne and Geneva, M. Jacob, ed., CERN 84–10 (1984).Google Scholar
  43. [40]
    F. Binon et al., Nucl. Instrum. Methods 188: 507 (1981).ADSGoogle Scholar
  44. [41]
    A.V. Barns et al., Phys. Rev. Lett. 37: 76 (1970).ADSGoogle Scholar
  45. See also T. Ferbel, Understanding the fundamental constituents of matter, A. Zichichi, ed., Plenum Press, New York, NY (1978).Google Scholar
  46. [42]
    J.A. Appel et al., Nucl. Instrum. Methods 127: 495 (1975).ADSGoogle Scholar
  47. D. Hitlin et al., Nucl. Instrum. Methods 137: 225 (1976).ADSGoogle Scholar
  48. R. Engelmann et al., Nucl. Instrum. Methods 216: 45 (1983)Google Scholar
  49. U. Micke et al., Nucl. Instrum. Methods 221: 495 (1984).Google Scholar
  50. [43]
    M. Basile et al., A limited-streamer tube electron detector with high rejection power against pions, to be published in Nucl. Instrum. Methods (1985).Google Scholar
  51. [44]
    J. Cobb et al., Nucl. Instrum. Methods 158: 93 (1979).ADSGoogle Scholar
  52. [45]
    J. Ledermann et al., Nucl. Instrum. Methods 129: 65 (1975).ADSGoogle Scholar
  53. [46]
    L. Baum et al., Proc. Calorimeter Workshop, Batavia, 1975, M. Atac, ed., FNAL, Batavia, Ill. (1975), p. 295.Google Scholar
  54. A. Grant, Nucl. Instrum. Methods 131: 167 (1975).ADSGoogle Scholar
  55. M. Holder et al., Nucl. Instrum. Methods 151: 69 (1978).ADSGoogle Scholar
  56. [47]
    A. Bodek et al., Phys. Lett. 113B: 77 (1982).Google Scholar
  57. [48]
    K. Eggert et al., Nucl. Instrum. Methods 176 (1980) 217.ADSGoogle Scholar
  58. [49]
    Technical Proposal of the L3 Collaboration, CERN/LEPC/83–5 (1983).Google Scholar
  59. [50]
    H. Gordon et al. (HELIOS Collaboration), Lepton production, CERN/SPSC 83–51 (1983).Google Scholar
  60. [51]
    Design Report: An experiment at DO to study antiproton-proton collisions at 2 TeV, December 1983.Google Scholar
  61. [52]
    G. Arnison et al., Phys. Lett. 139B: 115 (1984).Google Scholar
  62. P. Bagnaia et al., Z. Phys. C. 24: 1 (1984).ADSGoogle Scholar
  63. [53]
    W.J. Willis and K. Winter, in Physics with very high energy a+e-colliding beams, CERN 76–18 (1976).Google Scholar
  64. [54]
    B.L. Beron et al., Proc. 5th Int. Conf. on Instrumentation for High-Energy Physics, Frascati, 1973. Laboratori Nazionali del CNEN, Frascati (1973), p. 362.Google Scholar
  65. [55]
    Y. Chan et al., IEEE Trans. Nucl. Sci. NS-25: 333 (1978).Google Scholar
  66. [56]
    R. Batley et al., Performance of NaI array with photodiode readout at the CERN ISR, to be submitted to Nucl. Instrum. MethodsGoogle Scholar
  67. [57]
    M. Miyajima et al., Number of photo-electrons from photomultiplier cathode coupled with NaI (Tl) scintillator, KEK (Japan) 83–36 (1983).Google Scholar
  68. [58]
    G.J. Bobbink et al., Nucl. Instrum. Methods 227: 470 (1985).ADSGoogle Scholar
  69. [59]
    G. Blanar et al., Nucl. Instrum. Methods 203: 213 (1982).Google Scholar
  70. E. Lorenz, Nucl. Instrum. Methods 225: 500 (1984).Google Scholar
  71. [60]
    J. Ahme et al., Nucl. Instrum. Methods 221: 543 (1984).Google Scholar
  72. [61]
    J.A. Bakken et al., Nucl. Instrum. Methods 228: 294 (1985).ADSGoogle Scholar
  73. [62]
    C. Laviron and P. Lecoq, Radiation damage of bismuth germanate crystals, CERN-EF/84–5 (1984).Google Scholar
  74. [63]
    Ch. Bieler et al., Nucl. Instrum. Methods 234: 435 (1985).ADSGoogle Scholar
  75. [64]
    M. Kobayashi et al., Proc. Int. Symp. on Nuclear Radiation Detectors, INS Tokyo, (1981). Inst. for Nuclear Study, Tokyo (1981), p. 465.Google Scholar
  76. [65]
    D.E. Wagoner et al., A measurement of the energy resolution and related properties of an SCG1-C scintillation glass shower counter array for 1–25 GeV positrons, to be published in Nucl. Instrum. Methods (1985).Google Scholar
  77. [66]
    B. Powell et al., Nucl. Instrum. Methods 198: 217 (1982).Google Scholar
  78. [67]
    W. Bartel et al., Phys. Lett. 88B: 171 (1979).Google Scholar
  79. [68]
    P.D. Grannis et al., Nucl. Instrum. Methods 188: 239 (1981).ADSGoogle Scholar
  80. [69]
    K. Ogawa et al., A test of dense lead glass counters, to be published in Nucl. Instrum. Methods.Google Scholar
  81. [70]
    R.M. Brown et al., An electromagnetic calorimeter for use in a strong magnetic field at LEP based on CEREN 25 lead glass and vacuum photo-triodes, presented at the IEEE Meeting on Nuclear Science, Orlando, Fla., 1984.Google Scholar
  82. [71]
    C.A. Heusch, The use of Cherenkov techniques for total absorption measurements, preprint CERN-EP/84–98 (1984): invited talk given at the Seminar on Cherenkov Detectors and their Application in Science and Technology, Moscow, 1984.Google Scholar
  83. [72]
    H. Grassmann, Untersuchung der Energieauflösung eines CsI(Tl) Testkalorimeters für Elektronen zwischen 1 GeV and 20 GeV, Universität Erlangen (1984). H. Grassmann et al., Nucl. Instrum. Methods 228: 323 (1985).ADSGoogle Scholar
  84. [73]
    M. Laval et al., Nucl. Instrum. Methods 208: 169 (1983).Google Scholar
  85. [74]
    D.F. Anderson et al., Nucl. Instrum. Methods 228: 33 (1985)ADSGoogle Scholar
  86. [75]
    A. Kusumegi et al., Nucl. Instrum. Methods 185: 83 (1981).ADSGoogle Scholar
  87. [76]
    H.H. Chen et al., Nucl. Instrum. Methods 150: 579 (1984).Google Scholar
  88. [77]
    E. Gatti et al., Considerations for the design of a time projection liquid argon ionization chamber, BNL 23988 (1978).Google Scholar
  89. [78]
    K. L. Giboni, Nucl. Instrum. Methods 225: 579 (1984).ADSGoogle Scholar
  90. [79]
    C. Cerri et al., Nucl. Instrum. Methods 227: 227 (1984).ADSGoogle Scholar
  91. [80]
    J. Engler et al., Phys. Lett. 29B: 321 (1969).Google Scholar
  92. [81]
    W.A. Shurcliff, J. Opt. Soc. Am. 41: 209 (1951).Google Scholar
  93. [82]
    R.C. Garwin, Rev. Sci. Instrum. 31: 1010 (1960).ADSGoogle Scholar
  94. [83]
    G. Keil, Nucl. Instrum. Methods 89: 111 (1970).ADSGoogle Scholar
  95. [84]
    W.B. Atwood et al., SLAC-TN-76–7 (1976).Google Scholar
  96. [85]
    A. Barish et al., IEEE Trans. Nucl. Sci. NS-25: 532 (1978).Google Scholar
  97. [86]
    W. Selove et al., Nucl. Instrum. Methods 161: 233 (1979).ADSGoogle Scholar
  98. [87]
    V. Eckardt et al., Nucl. Instrum. Methods 155: 353 (1978).Google Scholar
  99. [88]
    Botner et al., IEEE Trans. Nucl. Sci. NS-28: 510 (1981).Google Scholar
  100. [89]
    W. Hofmann et al., Nucl. Instrum. Methods 195: 475 (1982).ADSGoogle Scholar
  101. [90]
    W. Kienzle, Scintillator development at CERN, CERN-NP Int. Report 75–12 (1975).Google Scholar
  102. [91]
    W. Viehmann and R.L. Frost, Nucl. Instrum. Methods 167: 405 (1979).ADSGoogle Scholar
  103. [92]
    J. Fent et al., Nucl. Instrum. Methods 225: 509 (1984).Google Scholar
  104. [93]
    H. Spitzer, Contribution to the Discussion Meeting on HERA Experiments, Genoa (1984).Google Scholar
  105. J. Ahme et al., Novel readout schemes for scintillator sandwich shower counters, to be published.Google Scholar
  106. [94]
    H.A. Gordon et al., Phys. Scripta 23: 564 (1981).ADSGoogle Scholar
  107. [95]
    UA1 Collaboration, Technical report on the design of a new combined electromagnetic/hadronic calorimeter for UA1, CERN/SPSC/84–72 (1984).Google Scholar
  108. [96]
    W. Kononnenko et al., Nucl. Instrum. Methods 214: 237 (1983).Google Scholar
  109. [97]
    L. Bachman et al., Nucl. Instrum. Methods 206: 85 (1983).Google Scholar
  110. [98]
    J. Borenstein et al., Phys. Scripta 23: 549 (1981).ADSGoogle Scholar
  111. [99]
    H. Blumenfeld et al., Nucl. Instrum. Methods 225: 518 (1984).Google Scholar
  112. H. Burmeister et al., Nucl. Instrum. Methods 225: 530 (1984).Google Scholar
  113. [100]
    H. Schönbacher and W. Witzeling, Nucl. Instrum. Methods 165: 517 (1979).ADSGoogle Scholar
  114. Y. Sirois and R. Wigmans, Radiation damage in plastic scintillators, submitted to Nucl. Instrum. Methods.Google Scholar
  115. [101]
    G. Marini et al., Radiation damage of organic scintillation materials, CERN `Yellow’ Report, in preparation (1985).Google Scholar
  116. [102]
    Usually, `accelerated’ tests are performed with levels of irradiation 10 to 106 times higher than those encountered in an experiment. Because radiation damage is frequently a function of both dose rate and integral dose, such tests are likely to indicate a higher dose tolerance than in the actual lower dose-rate experimental environment. R. Wigmans, private communication and Ref. [100].Google Scholar
  117. [103]
    R.J. Madaras et al., Nucl. Instrum. Methods 160: 263 (1979).ADSGoogle Scholar
  118. A.E. Baumbaugh et al., Nucl. Instrum. Methods 197: 297 (1982).Google Scholar
  119. A.M. Breakstone et al., Nucl. Instrum. Methods 211: 73 (1982).Google Scholar
  120. [104]
    Design report for the Fermilab Collider Detector Facility (CDF), FNAL (1981).Google Scholar
  121. [105]
    V. Brisson et al., Phys. Scripta 23: 688 (1981).ADSGoogle Scholar
  122. [106]
    W.J. Willis and V. Radeka, Nucl. Instrum. Methods 120: 221 (1974).ADSGoogle Scholar
  123. [107]
    L.W. Alvarez, LRL Physics Note 672 (1968) unpublished.Google Scholar
  124. [108]
    S.E. Derenzo et al., Nucl. Instrum. Methods 122: 319 (1974).ADSGoogle Scholar
  125. [109]
    K. Masuda et al., Nucl. Instrum. Methods 188: 629 (1981).ADSGoogle Scholar
  126. [110]
    T. Doke et al., Nucl. Instrum. Methods 134: 353 (1976).ADSGoogle Scholar
  127. T. Doke, Portugal Phys. 12, 1: 9 (1981).Google Scholar
  128. [111]
    G.R. Gruhn, private communication (1973).Google Scholar
  129. [112]
    M. Conversi, Nature 241: 160 (1973);ADSGoogle Scholar
  130. M. Conversi and L. Frederici, Nucl. Instrum. Methods 151: 193 (1978).Google Scholar
  131. [113]
    G.S. Abrams et al., IEEE Trans. Nucl. Sci. NS-27: 59 (1980).Google Scholar
  132. [114]
    V. Kadansky et al., Phys. Scripta 23: 680 (1981).ADSGoogle Scholar
  133. [115]
    H.J. Behrend et al., Phys. Scripta 23: 610 (1981).ADSGoogle Scholar
  134. [116]
    C. Nelson et al., Nucl. Instrum. Methods 216: 381 (1983).Google Scholar
  135. [117]
    J.A. Appel, Summary Session of the Gas Sampling Calorimeter Workshop, Fermilab FN-380 (1982);Google Scholar
  136. J. Engler, Nucl. Instrum. Methods 217: 9 (1983).Google Scholar
  137. [118]
    M. Jonker et al., Nucl. Instrum. Methods 215: 361 (1983).Google Scholar
  138. [119]
    G. Battistoni et al., Nucl. Instrum. Methods 202: 459 (1982).Google Scholar
  139. [120]
    SLD Design Report SLAC-273 (1984).Google Scholar
  140. [121]
    Presentations at the Discussion Meeting on HERA Experiments, Genoa, 1984.Google Scholar
  141. [122]
    W.F. Schmidt and A.O. Allen, J. Chem. Phys. 52: 4788 (1970).ADSGoogle Scholar
  142. [123]
    J. Engler and H. Keim, Nucl. Instrum. Methods 223: 47 (1984).Google Scholar
  143. [124]
    L. Onsager, Phys. Rev. 54: 554 (1938).ADSGoogle Scholar
  144. [125]
    R.C. Munoz et al., Ionization of tetramethylsilane by alpha particles, Brookhaven Nat. Lab. C-2911 (1984), submitted to Chemical Physics Letters.Google Scholar
  145. [126]
    G.G. Harigel, Nucl. Instrum. Methods 225: 641 (1984).Google Scholar
  146. [127]
    P.G. Rancoita and A. Seidman, Nucl. Instrum. Methods 226: 369 (1984).ADSGoogle Scholar
  147. G. Barbiellini et al., Nucl. Instrum. Methods 235: 55 (1985).ADSGoogle Scholar
  148. [128]
    E. Gatti and V. Radeka, IEEE Trans. Nucl. Sci. NS-25: 676 (1978).Google Scholar
  149. [129]
    G. Charpak and F. Sauli, Ann. Rev. Nucl. Part. Sci. 34: 285 (1984).ADSGoogle Scholar
  150. [130]
    H. Videau, Nucl. Instrum. Methods 225: 481 (1984).Google Scholar
  151. [131]
    G. Battistoni et al., Nucl. Instrum. Methods 176: 297 (1980).ADSGoogle Scholar
  152. [132]
    H.G. Fischer and O. Ullaland, IEEE Trans. Nucl. Sci. NS-27: 38 (1980).Google Scholar
  153. M. Berggren et al., Nucl. Instrum. Methods 225: 477 (1984).Google Scholar
  154. [133]
    E. Iarocci, Nucl. Instrum. Methods 217: 30 (1983).Google Scholar
  155. [134]
    P. Campana, Nucl. Instrum. Methods 225: 505 (1984).Google Scholar
  156. [135]
    H. Aihara et al., Nucl. Instrum. Methods 217: 259 (1983).Google Scholar
  157. [136]
    B. Pope, Proc. DPF Workshop, Berkeley (1983), LBL-15973, p. 49.Google Scholar
  158. [137]
    O. Botner and C.W. Fabjan, Measurements with the AFS calorimeter, unpublished note (1982).Google Scholar
  159. [138]
    R. Diebold and R. Wagner, Physics at 1034 cm-2 s-’, ANL-HEP-CP-84–87 and Proc. of the 1984 Summer Study of the Design and Utilization of the Superconducting Super Collider, Snowmass, Colo. (1984).Google Scholar
  160. [139]
    P. Curie and A. Laborde, C.R. Acad. Sci. 136: 673 (1903).Google Scholar
  161. [140]
    S. Simon, Nature 135: 763 (1935).ADSGoogle Scholar
  162. [141]
    T.O. Niinikoski and F. Udo, Cryogenic detection of neutrinos, CERN/NP Internal Report 74–6 (1974).Google Scholar
  163. E. Fiorini and T. Niinikoski, Nucl. Instrum. Methods 224: 83 (1984).Google Scholar
  164. [142]
    B. Cabrera et al., Bolometric detection of neutrinos, Harvard preprint HUTP-84/A077 (1984).Google Scholar
  165. [143]
    N. Coron et al., A composite bolometer as a charged-particle spectrometer, preprint CERN-EP/85–15 (1985).Google Scholar
  166. [144]
    A.V. Vishnevskii et al., Moscow preprint ITEP-53 (1979).Google Scholar
  167. [145]
    R. Bouclier et al., CERN-EP Internal Report 80–07 (1980).Google Scholar
  168. [146]
    W.J. Willis, private communication.Google Scholar
  169. [147]
    D.H. Perkins, Ann. Rev. Nucl. Part. Sci. 34: 1 (1984).MathSciNetADSGoogle Scholar
  170. [148]
    See, for example, Proc. 1980 International DUMAND Symposium, ed. V.J. Stenger. Honolulu, Hawaii (1981).Google Scholar
  171. [149]
    R. Cady et al., Proc. 1982 DPF Summer Study on Elementary Particle Physics and Future Facilities, eds. R. Donaldson, R. Gustayson and F. Paige, p. 630.Google Scholar
  172. R.M. Baltrusaitas et al., Phys. Rev. Letters 52: 380 (1984).Google Scholar
  173. [150]
    UA2 Collaboration, Proposal to improve the performance of the UA2 detector, CERN/SPSC 84–30 (1984).Google Scholar
  174. [151]
    W.J. Willis, BNL 17522: 207 (1972).Google Scholar
  175. [152]
    See for example, Proc. DPF Workshop, Berkeley (1983), LBL-15973.Google Scholar
  176. [153]
    E.D. Bloom and C.W. Peck, Ann. Rev. Nucl. Part. Sci. 33: 143 (1983).ADSGoogle Scholar
  177. [154]
    Physics with very high energy e+e-colliding beams, CERN 76–18 (1976).Google Scholar
  178. [155]
    E. Picasso, General Meeting on LEP, Villars-sur-011on, 1981, ed. M. Bourquin. ECFA 81/54, CERN, Geneva (1981), p. 32.Google Scholar
  179. [156]
    The technical proposals for the four LEP experiments have the following LEP Committee numbers: ALEPH, CERN/LEPC 83–2(1983); DELPHI, CERN/LEPC/83–3 (1983); OPAL CERN/LEPC/83–4 (1983); L3, CERN/LEPC/83–5 (1983).Google Scholar
  180. [157]
    W.K.H. Panofsky, 1981, ed. W. Pfeil, Phys. Inst., Bonn (1981), p. 957.Google Scholar
  181. [158]
    S.L.Wu, Phys. Reports 107: 61 (1984).ADSGoogle Scholar
  182. [159]
    C. Rubbia, Physics results of the UA1 Collaboration at the CERN proton-antiproton Collider preprint CERN-EP/84–135 (1984): invited talk given at the Int. Conf. on Neutrino Physics and Astrophysics, Nordkirchen near Dortmund,1984.Google Scholar
  183. [160]
    Experimentation at HERA, Proceedings of a Workshop jointly organized by DESY, ECFA, and NIKHEF, Amsterdam (1983).Google Scholar
  184. [161]
    W. Selove, CERN/NP Internal Report 72–25 (1972).Google Scholar
  185. [162]
    S. Almehed et al., CERN/ISRC/76–36 (1976).Google Scholar
  186. [163]
    M.A. Dris, Nucl. Instrum. Methods 161: 311 (1979).ADSGoogle Scholar
  187. [164]
    M. Block, UA1 Collaboration (CERN), unpublished note UA1–6, (1977).Google Scholar
  188. [165]
    L. Rosselet, Proc. Topical Conf. on the Applications of Microprocessors to High-Energy Physics Experiments, Geneva, 1981, CERN 81–07 (1981), p. 316.Google Scholar
  189. [166]
    R.L. Ford and W.P. Nelson, Stanford preprint SLAC-210 EGS, Version IV.Google Scholar
  190. [167]
    T. Kondo et al., Talk given at the 1984 Summer Study on the Design and Utilization of the Superconducting Super-Collider, Snowmass, Colo., 1984. DELPHI Progress Report, CERN/LEPC 84–16 (1984).Google Scholar
  191. [168]
    A. Grant, Nucl. Instrum. Methods 131: 167 (1975).ADSGoogle Scholar
  192. [169]
    H. Fesefeldt, Proc. Workshop on Shower Simulation for LEP Experiments, eds. A. Grant et al. CERN report in preparation.Google Scholar
  193. [170]
    Proc. Workshop on Shower Simulation for LEP Experiments, eds. A. Grant et al. CERN report in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Christian W. Fabjan
    • 1
  1. 1.CERNGeneva 23Switzerland

Personalised recommendations