Skip to main content

Dynamics of the Relativistic Heavy Ion Collisions

  • Chapter
Heavy Ion Collisions

Part of the book series: NATO ASI Series ((NSSB,volume 130))

Abstract

The boundaries of the relativistic heavy ion collision domain are loosely defined. Obviously, the lower limit is certainly at an incident beam energy (per nucleon) larger than the highest energy discussed by Prof. M. Lefort in his lectures,2 about 44 MeV/A. The upper limit separating relativistic and ultrarelativistic collisions (discussed elsewhere by Prof. G. Baym3) is even more diffuse. As a convenient but perhaps not very meaningful guide, we will use the present operating accelerators. The Bevalac has accelerated for now twelve years ions up to Ar from 250 MeV/A to 2.1 GeV/A (which corresponds to a Lorentz factor in the lab frame from γinc = 1.26 to 3.23).Very recently Nb and La beams have been accelerated and Au and U beams are going to be exploited in the very near future. The Synchrophasotron at Dubna has the more energetic ions available nowadays: up to 4 GeV/A, but unfortunately, only light ions (up to 12C) are available. In the last months or so, C and O beams have been accelerated in the Saturn machine in Saclay at an energy around 1 GeV/A. The Ganil machine in France and the MSU machine should cover the range between 100 MeV and 400 MeV per nucleon, but they are just starting now. As most of the now available data have been obtained in Berkeley, our purpose here is to discuss the physics in the Bevalac range, with some excursions in the Ganil regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The reader is assumed to be familiar with nucleus-nucleus and relativistic kinematics. If not, see, f.i. the Appendix of Ref. 4.

    Google Scholar 

  2. M. Lefort, this School.

    Google Scholar 

  3. G. Baym, “Quark Matter Conference 84”, Helsinki, June 1984

    Google Scholar 

  4. S. Nagamiya and M. Gyulassy, Adv. Nucl. Phys. 13 (1984) 201.

    CAS  Google Scholar 

  5. V.I. Manko and S. Nagamiya, Nucl. Phys. A384 (1982) 475.

    Article  Google Scholar 

  6. S. Nagamiya, “Quark Matter Conference 83”, Brookhaven, Sept. 1983.

    Google Scholar 

  7. Y. Miake et al., University of Tokyo preprint, 1984.

    Google Scholar 

  8. S. Nagamiya, M.-C. Lemaire, S. Schnetzer, H. Steiner and I. Ta¬nihata, Phys. Rev. Lett. 45 (1980) 602.

    Article  CAS  Google Scholar 

  9. I. Tanihata, M.-C. Lemaire, S. Nagamiya and S. Schnetzer, Phys. Lett. 97B (1980) 363.

    Google Scholar 

  10. I. Tanihata, in: “Proceedings of Hakone Seminar on High-Energy Nuclear Interactions and Properties of Dense Nuclear Matter”, K. Nakai and A.S. Goldhaber, eds., Hakone, Japan (1980), p. 382.

    Google Scholar 

  11. I. Tanihata, S. Nagamiya, S. Schnetzer and H. Steiner, Phys. Lett. 100B (1981) 121.

    Google Scholar 

  12. S. Nagamiya et al., Phys. Rev. C24 (1981) 971.

    CAS  Google Scholar 

  13. J. Cugnon, T. Mizutani and J. Vandermeulen, Nucl. Phys. A352 (1981) 505.

    Article  Google Scholar 

  14. J. Cugnon, D. Kinet and J. Vandermeulen, Nucl. Phys. A379 (1982) 553.

    Article  Google Scholar 

  15. P.J. Siemens and J.O. Rasmussen, Phys. Rev. Lett. 42 (1979) 844.

    Article  Google Scholar 

  16. G. Bertsch, in: “Progress in Particle and Nuclear Physics” vol. 4, D. Wilkinson, ed., Pergamon, Oxford (1980), p. 483.

    Google Scholar 

  17. P. Danielewicz, Ann. Phys. 152 (1984) 239, 305.

    Article  Google Scholar 

  18. R. Yvon, “Les Corrélations et l’Entropie Statistique Classique”, Dunod, Paris (1965).

    Google Scholar 

  19. P.C. Martin and J. Schwinger, Phys. Rev. 115 (1959) 1342.

    Google Scholar 

  20. E.P. Wigner, Phys. Rev. 40 (1932) 749.

    Article  CAS  Google Scholar 

  21. S.E. Koonin, in“Nuclear Theory 1981”,ed. by G. Bertsch, WSPC,1982.

    Google Scholar 

  22. L.P. Kadanoff and G. Baym, “Quantum Statistical Mechanics”, Benjamin, New York (1962).

    Google Scholar 

  23. J. Cugnon, Nucl. Phys. A387 (1982) 191c.

    Article  Google Scholar 

  24. R. Balescu, “Equilibrium and Non Equilibrium Statistical Mecha¬nics”, Wiley-Interscience, New York (1975), ch. 11.

    Google Scholar 

  25. A.R. Bodmer and A.D. MacKeller, Phys. Rev. C15 (1977) 1342.

    Google Scholar 

  26. L. Wilets, Y. Yariv and R. Chesnut, Nucl. Phys. A301 (1978) 359.

    Article  Google Scholar 

  27. D.J.E. Callaway, L. Wilets and Y. Yariv, Nucl. Phys. A327 (1979) 250.

    Article  Google Scholar 

  28. A.R. Bodmer, C.N. Panos and A.D. MacKeller, Phys. Rev. C22 (1980) 1025.

    Google Scholar 

  29. A.R. Bodmer and C.N. Panos, Nucl. Phys. A356 (1981) 517.

    Article  Google Scholar 

  30. J.J. Molitoris et al., MSU preprint (1984).

    Google Scholar 

  31. J. Randrup, Nucl. Phys. A316 (1979) 509.

    Article  Google Scholar 

  32. H.J. Pirner and B. Schdrmann, Nucl. Phys. A316 (1979) 461.

    Article  Google Scholar 

  33. B. Schürmann, Phys. Rev. C20 (1979) 1607.

    Google Scholar 

  34. B. Schürmann and N. Mancoc-Borstnik, Phys. Rev. C26 (1982) 519.

    Google Scholar 

  35. R. Malfliet, Phys. Rev. Lett. 44 (1980) 864.

    Article  CAS  Google Scholar 

  36. R. Malfliet, Nucl. Phys. A363 7981) 429; 456.

    Google Scholar 

  37. J. Cugnon, Phys. Rev. C23 (1981) 2094.

    Google Scholar 

  38. R.L. Hatch and S.E. Koonin, Phys. Lett. 81B (1978) 1.

    Google Scholar 

  39. B. Schürmann and J. Randrup, Phys. Rev. C23 (1981) 2766.

    Google Scholar 

  40. J. Hüfner and J. Knoll, Nucl. Phys. A290-1977) 460.

    Google Scholar 

  41. J. Knoll and J. Randrup, Nucl. Phys. A324 (1979) 445.

    Article  Google Scholar 

  42. J. Knoll and J. Randrup, Phys. Lett. 103B (1981) 264.

    Google Scholar 

  43. J. Cugnon, J. Knoll and J. Randrup, Nucl. Phys. A360 (1981) 444.

    Article  Google Scholar 

  44. J. Knoll, Phys. Rev. C20 (1979) 773.

    CAS  Google Scholar 

  45. S. Bohrmann and J. Knoll, Nucl. Phys. A356 (1981) 498.

    Article  Google Scholar 

  46. A.H. Blin, S. Bohrmann and J. Knoll, Z. Physik A306 (1982) 177.

    Article  CAS  Google Scholar 

  47. K.K. Gudima and V.D. Toneev, Yad. Fiz. 27 (1978) 658 [Sov. J. Nucl. Phys. 27 (1978) 351].

    Google Scholar 

  48. E.C. Halbert, Phys. Rev. C23 (1981) 295.

    CAS  Google Scholar 

  49. H. Stöcker, J. Hofmann, J.A. Maruhn and W. Greiner, Prog. Part. Nucl. Phys. 4 (1980) 133.

    Article  Google Scholar 

  50. J. Cugnon and J. Vandermeulen, in: “Winter College on Nuclear Physics”, Trieste, March 1984.

    Google Scholar 

  51. G. Bertsch and G. Baym, to be published.

    Google Scholar 

  52. A.A. Amsden, G.F. Bertsch, F.H. Harlow and J.R. Nix, Phys. Rev. Lett. 35 (1975) 905.

    Article  CAS  Google Scholar 

  53. A.A. Amsden, F.H. Harlow and J.R. Nix, Phys. Rev. C15 (1977) 1059.

    Google Scholar 

  54. C.F. Chapline, H.H. Johnson, E. Teller and M.S. Weiss, Phys. Rev. D8 (1973) 4302.

    Google Scholar 

  55. L.D. Landau and E.M. Lifshitz, “Fluid Mechanics”, Pergamon, Oxford (1959).

    Google Scholar 

  56. H. Stöcker, M.Gyulassy and J. Boguta, Phys. Lett. 103B (1981) 269.

    Article  Google Scholar 

  57. J.R. Nix, Progr. Part. Nucl. Phys. 2 (1979) 237.

    CAS  Google Scholar 

  58. P. Danielewicz, unpublished.

    Google Scholar 

  59. H. Stöcker et al., Phys. Rev. Lett. 47 (1981) 1807.

    Google Scholar 

  60. G. Buchwald, L.P. Csernai, J.A. Maruhn and W. Greiner, Phys. Rev. C24 (1981) 135.

    CAS  Google Scholar 

  61. A. Sandoval et al., Phys. Rev. C21 (1980) 1321.

    Google Scholar 

  62. J.R. Nix and D. Strottman, Phys. Rev. C23 (1981) 2548.

    Google Scholar 

  63. G. Buchwald et al., Phys. Rev. Lett. 52 (1984) 1594.

    Google Scholar 

  64. H.H.K. Tang and C.Y. Wong, Phys. Rev. C21 (1980) 1846.

    Google Scholar 

  65. R. Stock et al., Phys. Rev. Lett. 44 (1980) 1243.

    Google Scholar 

  66. H.A. Gustafsson et al., Phys. Rev. Lett. 52 (1984) 1590.

    Google Scholar 

  67. H.H. Gutbrod et al., Phys. Rev. Lett. 37 (1976) 667.

    Article  CAS  Google Scholar 

  68. M.-C. Lemaire et al., Phys. Lett. 85B -1979) 38.

    Google Scholar 

  69. M.-C. Lemaire, in “Proceedings of the 2nd French-Japanese Collo¬quium on Nuclear Physics with Heavy Ions”, IN2P3 Publication, Gif-Sur-Yvette, France (October, 1979) p. 139 [Preprint: Lawrence Berkeley Laboratory Report LBL-10555 (1979)].

    Google Scholar 

  70. G. Bertsch and J. Cugnon, Phys. Rev. C24 (1981) 2514.

    Google Scholar 

  71. E.A. Remler, Ann. Phys. (N.Y.) 136 (1981) 293.

    Article  CAS  Google Scholar 

  72. E.A. Remler, Phys. Rev. C25 (19-ET 2974.

    Google Scholar 

  73. S.F. Butler and C.A. Pearson, Phys. Rev. 129 (1963) 836.

    Article  CAS  Google Scholar 

  74. M. Gyulassy, K. Frankel and E.A. Remler, Nucl. Phys. A402 (1983) 596.

    Article  Google Scholar 

  75. S. Nagamiya, in: “Proceedings of the Symposium on Heavy Ion Physics from 10 to 200 MeV/A”, Brookhaven 1979. See also Ref. 61.

    Google Scholar 

  76. P.J. Siemens and J.I. Kapusta, Phys. Rev. Lett. 43 (1979) 1486.

    Google Scholar 

  77. H. Stöcker, Lawrence Berkeley Laboratory Report LBL-12302 (1981).

    Google Scholar 

  78. J. Knoll, L. Münchow, G. Röpke and H. Schulz, Phys. Lett. 112E (1982) 13.

    Google Scholar 

  79. H. Sato and K. Yazaki, Phys. Lett. 98B (1981) 153.

    Google Scholar 

  80. H.H. Gutbrod et al., Nucl. Phys. A397 (1982) 177c.

    Google Scholar 

  81. S. Nagamiya, in: “Proceedings of the International Conference on Nuclear Physics”, P. Blasi and R.A. Ricci, eds., Tipografia Compositori, Bologna (1983), p. 431.

    Google Scholar 

  82. G. Bertsch and J. Cugnon, unpublished.

    Google Scholar 

  83. A.Z. Mekjian, Phys. Rev. C17 (1978) 1051.

    Google Scholar 

  84. J.I. Kapusta, Phys. Rev. C16 (1977) 1493.

    Google Scholar 

  85. J. Cosset, J.I. Kapusta and G.D. Westfall, Phys. Rev. C18 (1978) 844.

    Article  Google Scholar 

  86. J. Randrup and S.E. Koonin, Nucl. Phys. A356 (1981) 223.

    Article  Google Scholar 

  87. G. Féi and J. Randrup, Nucl. Phys. A381 (1982) 557.

    Article  Google Scholar 

  88. A. Sandoval et al., Phys. Rev. Lett. 45 (1980) 874.

    Article  CAS  Google Scholar 

  89. J.J. Lu et al., Phys. Rev. Lett. 46 (1981) 898.

    Article  CAS  Google Scholar 

  90. M. Gyulassy and S.K. Kauffmann, Phys. Rev. Lett. 40 (1978) 298.

    Article  CAS  Google Scholar 

  91. R. Stock et al., Phys. Rev. Lett. 49 (1982) 1236.

    Google Scholar 

  92. J.W. Harris and R. Stock, in: “7th Oaxtepec Meeting on Nuclear Physics” (January 1984).

    Google Scholar 

  93. M. Cahay, J. Cugnon and J. Vandermeulen, Nucl. Phys. A411 (1983) 524.

    Article  Google Scholar 

  94. G. Bertsch, H. Kruse and S. Das Gupta, Phys. Rev. C29 (1984) 673.

    Article  CAS  Google Scholar 

  95. R. Malfliet, KVI preprint (1984).

    Google Scholar 

  96. R. Malfliet, Nucl. Phys. A420 (1984) 621.

    Article  Google Scholar 

  97. D. Enskog, Kugl. Svenska Vet. Akad. Handl. 63 (1921) n° 4.

    Google Scholar 

  98. H. Pirner, Phys. Rev. C22 (1980) 1962.

    Google Scholar 

  99. G. Bertsch and A.A. Amsden, Phys. Rev. C18 (1978) 1293.

    Google Scholar 

  100. J. Kapusta and D. Strottman, Phys. Lett. 106B (1981) 33.

    Google Scholar 

  101. J. Cugnon, J. Knoll, C. Riedel and Y. Yariv, Phys. Lett. 109B (1982) 167.

    Google Scholar 

  102. J. Cugnon and D. L’Hôte, Nucl. Phys. A397 (1983) 519.

    Article  Google Scholar 

  103. M. Gyulassy, K.A. Frankel and H. Stöcker, Phys. Lett. 110B (1982) 185.

    Google Scholar 

  104. H. Stöcker et al., Phys. Rev. C25 (1982) 1873.

    Google Scholar 

  105. P. Danielewicz and M. Gyulassy, Phys. Lett. 129B (1983) 283.

    Google Scholar 

  106. J. Cugnon and D. L’Hôte, Phys. Lett. (in press).

    Google Scholar 

  107. T.J.M. Symons et al., Phys. Rev. Lett. 42 (1979) 40.

    Article  CAS  Google Scholar 

  108. G.D. Westfall et al., Phys. Rev. Lett. 43 (1979) 1859.

    Google Scholar 

  109. P.B. Price and J. Stevenson, Phys. Rev. C24 (1981) 2101.

    Google Scholar 

  110. S. Frankel and R.M. Woloshyn, Phys. Rev. C16 (1977) 1680.

    Google Scholar 

  111. T. Yukawa and S. Furui, Phys. Rev. C20 (1979) 2316.

    Google Scholar 

  112. O. Bohigas and S. Stringari, Phys. Lett. 95B (1980) 9.

    Google Scholar 

  113. I.A. Schmidt and R. Blankenbecler, Phys. Rev. D15 (1977) 3321; Phys. Rev. D16 (1977) 1318.

    Google Scholar 

  114. L.S. Schroeder et al., Phys. Rev. Lett. 43 (1979) 1787.

    Google Scholar 

  115. R.H. Landau and M. Gyulassy, Phys. Rev. C19 (1979) 149.

    Article  CAS  Google Scholar 

  116. J. Knoll and S. Shyam, G.S.I. Preprint (1984).

    Google Scholar 

  117. D.E. Greiner et al., Phys. Rev. Lett. 35 (1974) 152.

    Article  Google Scholar 

  118. A.S. Goldhaber, Phys. Lett. 53B (1974) 306.

    Google Scholar 

  119. H. Feshbach and K. Huang, Phys. Lett. 47B (1973) 300.

    CAS  Google Scholar 

  120. H. Feshbach and M. Zabek, Ann. Phys. 107 (1977) 110.

    Article  CAS  Google Scholar 

  121. C.A. Whitten, Jr., Nucl. Phys. A335 (1980) 419.

    Google Scholar 

  122. T. Fujita and J. Hüfner, Nucl. Phys. A343 (1980) 493.

    Google Scholar 

  123. J. Hüfner and M.C. Nemes, Phys. Rev. C23 (1981) 2538.

    Google Scholar 

  124. J. Hüfner, K. Schafer and B. Schürmann, Phys. Rev. C12 (1975) 1888.

    Google Scholar 

  125. A.I. Warwick et al., Phys. Rev. C27 (1983) 1083.

    Google Scholar 

  126. N. Porile et al., Phys. Rev, C19 - 7979 ) 2288.

    Google Scholar 

  127. M.E. Fisher, Physics 3 (1967) 225.

    Google Scholar 

  128. A.D. Panagiotou et al, Phys. Rev. Lett. 52 (1984) 496.

    Article  CAS  Google Scholar 

  129. Y. Cassagnou et al., preprint Saclay 2151, April 1984.

    Google Scholar 

  130. X. Campi, J. Desbois and E. Lipparini, Phys. Lett. 142B (1984) 8.

    Google Scholar 

  131. X. Campi, J. Desbois and E. Lipparini, in: “Heavy Ion Confer¬ence”, Paris, May 1984.

    Google Scholar 

  132. G. Bertsch and D. Mundinger, Phys. Rev. C17 (1977) 1646.

    Google Scholar 

  133. J. Aichelin and J. Hüfner, Phys. Lett. 136B (1984) 15.

    Google Scholar 

  134. X. Campi and J. Hüfner, Phys. Rev. C24 (1981 ) 2199.

    Google Scholar 

  135. M. Brack and P. Quentin, Phys. Lett. B52 (1974) 159.

    Google Scholar 

  136. U. Mosel, P.G. Zint and K.H. Passler, Noicl. Phys. A236 (1974) 252.

    Article  Google Scholar 

  137. G. Röpke, L. Münchow and H. Schulz, Phys. Lett. 110B (1982) 21.

    Google Scholar 

  138. M. Barranco and J.R. Büchler, Phys. Rev. C22 (19’57–1729.

    Google Scholar 

  139. B. Friedman and V.R. Pandharipande, Nucl. Phys. A361 (1981) 502.

    Article  Google Scholar 

  140. A. Bijl, Thesis, Leiden (1938).

    Google Scholar 

  141. M.E. Fisher and M.F. Sykes, Phys. Rev. 114 (1959) 45.

    Article  Google Scholar 

  142. M.I. Sobel, P.J. Siemens, J.P. Bondorf and H.A. Bethe, Nucl. Phys. A251 (1975) 502.

    Article  Google Scholar 

  143. G. Bertsch and P.J. Siemens, Phys. Lett. 126B (1983) 9.

    Google Scholar 

  144. J. Cugnon, Phys. Lett. 135B (1984) 374.

    Google Scholar 

  145. J.P. Bondorf, S.I.A. Garpmann and J. Zimanyi, Nucl. Phys. A296 (1978) 320.

    Google Scholar 

  146. M.W. Curtin, H. Toki and D.K. Scott, Phys. Lett. 123B (1983) 289.

    Google Scholar 

  147. V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20 (1950) 1064.

    Google Scholar 

  148. P. Bonche, S. Levit and D. Vautherin, Nucl. Phys. (in press).

    Google Scholar 

  149. B. Strack and J. Knoll, Z. Physik A315 (1984) 249.

    Article  CAS  Google Scholar 

  150. P. Banche, S. Levit and D. Vautherin, Saclay preprint (1984).

    Google Scholar 

  151. W.A. Friedman and W.G. Lynch, Phys. Rev. C28 (1983) 950.

    CAS  Google Scholar 

  152. D.H. Boal, preprint MSUCL-451 (1984).

    Google Scholar 

  153. S. Schnetzer et al., Phys. Rev. Lett. 49 (1982) 989.

    Article  CAS  Google Scholar 

  154. J.W. Harris et al., Phys. Rev. Lett. 47 (1981) 229.

    Article  CAS  Google Scholar 

  155. A. Shor et al., Phys. Rev. Lett. 48 (1982) 1597.

    Google Scholar 

  156. J. Randrup and C.M. Ko, Nucl. Phys. A343 (1980) 519.

    Google Scholar 

  157. W. Zwermann et al., Phys. Lett. 134B (1984) 392.

    Google Scholar 

  158. J. Cugnon and R. Lombard, Nucl. Phys. A422 (1984) 635.

    Article  Google Scholar 

  159. J. Randrup, Phys. Lett. 99B (1981) 9.

    Google Scholar 

  160. S. Nagamiya, Phys. Rev. Lett. 49 (1982) 1383.

    Article  CAS  Google Scholar 

  161. M. Gyulassy, Nucl. Phys. A354 (1981 ) 395.

    Google Scholar 

  162. S. Nagamiya et al., Phys. Rev. Lett. 48 (1982) 1780.

    Google Scholar 

  163. C. Sagan, “The Dragons of Eden”, Ballantine Books, New York (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Cugnon, J. (1986). Dynamics of the Relativistic Heavy Ion Collisions. In: Bonche, P., Lévy, M., Quentin, P., Vautherin, D. (eds) Heavy Ion Collisions. NATO ASI Series, vol 130. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5015-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5015-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5017-0

  • Online ISBN: 978-1-4684-5015-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics