Chaos in Nuclei or Statistical Mechanics of Small Systems: Fluctuations

  • Hans A. Weidenmüller
Part of the NATO ASI Series book series (NSSB, volume 130)


A review of the empirical evidence for stochasticity in nuclear spectra and in nuclear reactions and its description in terms of random-matrix models is followed by a discussion of the connection between such stochasticity and the behaviour of systems which are the quantum analogues of classical chaotic systems. The comparison suggests that the fluctuations observed experimentally, and described in terms of random-matrix models, are universal. This then calls for a systematic approach towards the calculation of fluctuation properties from random-matrix models. It is shown that methods developed over the last few years in the theory of disordered systems combining functional integration with the replica trick and the loop expansion, or with the use of anticommuting (or Grassmann) variables, obey this requirement, and yield novel results. Some of these results are presented, and discussed.


Versus Versus Versus Integration Variable Compound Nucleus Versus Versus Versus Versus Anderson Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. |1|.
    T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev.Mod.Phys. 53 (1981) 385CrossRefGoogle Scholar
  2. |2|.
    O. Bohigas and M.J. Giannoni, Lecture Notes in Physics Springer Verlag, Heidelberg, Berlin, New York, Tokyo (1984) Volume 209, 1Google Scholar
  3. |3|.
    H.A. Weidenmüller, in Progress in Particle and Nuclear Physics, Vol. 3 (1980) 49, Pergamon Press, Oxford, New York, Frankfurt, ParisGoogle Scholar
  4. |4|.
    T. Ericson and T. Mayer-Kuckuk, Ann.Rev.Nucl.Sci. 16 (1966) 183CrossRefGoogle Scholar
  5. |5|.
    C. Mahaux and H.A. Weidenmüller, Shell-model approach to Nuclear Reactions, North-Holland Publishing Co., Amsterdam 1969. 16 C.Google Scholar
  6. |6|.
    C. Mahaux and H.A. Weidenmüller, Ann.Rev.Nucl.Part.Sci 29 (1979) 1CrossRefGoogle Scholar
  7. |7|.
    F. Wegner, Phys.Rev. B19 (1979) 783CrossRefGoogle Scholar
  8. |8|.
    L. Schäfer and F. Wegner, Z.Phys. B38 (1980) 113CrossRefGoogle Scholar
  9. |9|.
    K.B. Efetov, Adv. Phys. 32 (1983) 53CrossRefGoogle Scholar
  10. |10|.
    J.J.M. Verbaarschot, H.A. Weidenmüller and M.R. Zirnbauer, Phys.Rev.Lett. 52 (198)4) 1597Google Scholar
  11. J.J.M. Verbaarschot and M.R. Zirnbauer, Ann.Phys. (N.Y.), 158 (1986) 78CrossRefGoogle Scholar
  12. H.K. Weidennialler, Ann.Phys. (N.Y.), 158 (1986) 120Google Scholar
  13. J.J.M. Verbaarschot and M.R. Zirnbauer,-J.Phys. A 17 (1985) 1093Google Scholar
  14. J.J.M. Verbaarschot, H.A. Weidenmaller and M.R. Zirnbauer, Phys.Lett. 149B (1986) 263Google Scholar
  15. J.J.M. Verbaarschot, H.A. Weidenmaller and M.R. Zirnbauer, Physics Reports 129 (1985) 367CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Hans A. Weidenmüller
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergW. Germany

Personalised recommendations