Advertisement

An Introduction to Lattice QCD

  • G. Martinelli
Part of the NATO ASI Series book series (NSSB, volume 130)

Abstract

In the last decade an impressive collection of converging experimental results indicated Quantum Chromodynamics (QCD) as a unique candidate to describe strong interactions. Many important predictions from perturbative QCD have been already experimentally confirmed to a certain quantitative level. Among the others:
  1. a)

    The value of R= σ (e+e → hadrons) /σ (e+eμ + μ )

     
  2. b)

    The properties of jets at PETRA energies (√s ≃ 30 GeV)

     
  3. c)

    The dependence of the average transverse momentum < pT > on √s in hadronic collisions

     
  4. d)

    The photon structure function

     
  5. e)

    -Onium decays

     
  6. f)

    Scaling violations

     

Keywords

Gauge Theory Wilson Loop Chiral Symmetry Breaking Lattice Gauge Theory Finite Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.G. Wilson, Phys. Rev. D10, 2445 (1974).Google Scholar
  2. 2.
    C.N. Yang, R.L. Mills, Phys. Rev. 96, 191 (1954).CrossRefGoogle Scholar
  3. 3.
    H.D. Politzer, Phys. Rev. Letters 30, 1346 (1973)CrossRefGoogle Scholar
  4. D.J. Gross and F. Wilczek, Phys. Rev. Letters 30, 1343 (1973)CrossRefGoogle Scholar
  5. D.J. Gross and F. Wilczek, Phys. Rev. D8, 3633 (1973).Google Scholar
  6. 4.
    See for example E.S. Abers, B.W. Lee, Phys. Rep. 9, 1 (1973).CrossRefGoogle Scholar
  7. 5.
    G.C. Wick, Phys. Rev. 96, 1124 (1954).CrossRefGoogle Scholar
  8. 6.
    J.B. Kogut et al., Phys. Rev. Letters 43, 484 (1979)CrossRefGoogle Scholar
  9. J.B. Kogut et al., Phys. Rev. Letters 95, 410 (1980)CrossRefGoogle Scholar
  10. J.B. Kogut et al., Phys. Letters 98B, 63 (1981)Google Scholar
  11. G. Münster, Nucl. Phys. B190 (FS3) 439 (1981)CrossRefGoogle Scholar
  12. G. Münster, E B205 (FS5) 648 (1982)Google Scholar
  13. G. Münster, P. Weitz, Phys. Letters 96B, 119 (1980).Google Scholar
  14. 7.
    M. Falcioni et al., Phys. Letters 102B, 270 (1981)Google Scholar
  15. M. Falcioni et al., Nucl. Phys. B190 (FS3) 792 (1981).Google Scholar
  16. 8.
    A. Hasenfratz et al., Nucl. Phys. B181, 353 (1981)CrossRefGoogle Scholar
  17. C. Itzykson et al., Phys. Letters B95, 259 (1980)Google Scholar
  18. M. Lüscher et al., Nucl. Phys. B180, 1 (1980).Google Scholar
  19. 9.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, J. Chemical Phys. 21, 1087 (1953).CrossRefGoogle Scholar
  20. 10.
    The method for SU(3) is explained in N. Cabibbo and E. Marinari, Phys. Letter 119B, 387 (1982).Google Scholar
  21. 11.
    G. Parisi Nucl. Phys. B180 (FS2), 378 (1981).CrossRefGoogle Scholar
  22. 12.
    D. Callaway and A. Rahman, Phys. Rev. Letters 49, 613 (1982).CrossRefGoogle Scholar
  23. 13.
    For a recent discussion see: K.G. Bowler et al., Contributed paper to the XXII Intern. Conf. on High Energy Physics, Leipzig (1984).Google Scholar
  24. 14.
    J.D. Stack, Phys. Rev. D29, 1213 (1984).Google Scholar
  25. 15.
    D. Barkai, K.J.M. Moriarty and C. Rebbi, BNL-34462 (1984).Google Scholar
  26. 16.
    For a recent review see: “Quarkonium Spectroscopy” W. Büchmüller CERN-TH 3938 (1984).Google Scholar
  27. 17.
    L.H. Karsten and J. Smit, Nucl. Phys. B183, 103 (1981).CrossRefGoogle Scholar
  28. 18.
    H.B. Nielsen and N. Ninomiya, Nucl. Phys. B185, 20 (1981); B193, 173 (1981).Google Scholar
  29. 19.
    E. Marinari, G. Parisi and C. Rebbi, Nucl. Phys B190, 734 (1981).CrossRefGoogle Scholar
  30. 20.
    J. Kogut, M. Stone and H.W. Wyld, Nucl. Phys. B255 (FS9) 326 (1983).CrossRefGoogle Scholar
  31. 21.
    The program to compute hadron masses by Montecarlo simulation started with the following papers: H. Hamber and G. Parisi, Phys. Rev. Lett. 47 1792 (1981)CrossRefGoogle Scholar
  32. E. Marinari, G. Parisi and C. Rebbi, Phys. Rev. Letter 47, 1795 (1981)CrossRefGoogle Scholar
  33. D.H. Weintgarten, Phys. Letters B109, 57 (1982)Google Scholar
  34. More recent results can be found in: H. Lipps, G. Martinelli, R. Petronzio and F. Rapuano, Phys. Letters 126B, 152 (1983).Google Scholar
  35. K.C. Bowler, D.L. Chalmers, A. Kenway, R.D. Kenway, G.S. Pawley and D.J. Wallace, Edimburg preprint no. 84/295 (1984)Google Scholar
  36. A. Billoire, E. Marinari and R. Petronzio, CERN-TH 3838 (1984).Google Scholar
  37. For a different approach based on the hopping parameter expansion see for example P. Hasenfratz, I. Montway, Phys. Rev. Letters 50, 309 (1983) and references therein.Google Scholar
  38. 22.
    N. Cabibbo and G. Parisi, Phys. Letters 59B, 67 (1975).Google Scholar
  39. 23.
    C. Borgs and E. Seiler, Commun. Math. Phys. 91, 329 (1983).CrossRefGoogle Scholar
  40. 24.
    B. Svetitsky, L.G. Yaffe, Nucl. Phys. B210 (FS6) 423 (1982).CrossRefGoogle Scholar
  41. 25.
    T. Banks and A. Ukawa, Nucl. Phys. B225 (FS9), 145 (1983).CrossRefGoogle Scholar
  42. 26.
    P.V. Gavai, H. Satz, Bielefeld preprint BT-TP84/14 (1984).Google Scholar
  43. 27.
    T. Celik, J. Engels and H. Satz, Phys. Letters 125B, 411 (1983).Google Scholar
  44. 28.
    A.D. Kennedy, J. Kuti, S. Meyer and B.J. Pendleton, S. Barbara preprint NSF-ITP-84–61 (1984).Google Scholar
  45. 29.
    P. Hasenfratz, F. Karsch and I.O. Stamatescu, Phys. Letters 133B 221 (1983)Google Scholar
  46. T. Celik, J. Engels and H. Satz, Phys. Letters 133B, 427 (1984)Google Scholar
  47. M. Fischler and R. Roskies, Pittsburgh preprint Pitt-84–18 (1984)Google Scholar
  48. R.V. Gavai, M. Lev and B. Petersson, Bielfeld preprint BI-TP-84/10 (1984)Google Scholar
  49. F. Fucito, C. Rebbi and S. Solomon, Caltech preprint CALT-681124 and 1127 (1984)Google Scholar
  50. J. Polonyi, H.W. Wild, J.B. Kogut, J. Shigemitsu and P.K. Sinclair, Phys. Rev. Letters 53, 644 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • G. Martinelli
    • 1
  1. 1.INFN — Laboratori Nazionali di FrascatiFrascatiItaly

Personalised recommendations