Enzyme-Linked Immunoelectrotransfer Blot (EITB)

  • Victor C. W. Tsang
  • George E. Bers
  • Kathy Hancock


The enzyme-linked immunoelectrotransfer blot (EITB) (Tsang et al., 1983a) is a synergistic union of 3 independently powerful techniques. Complex mixtures of biological molecules are first separated by sodium dodecyl sulfate Polyacrylamide gel electrophoresis (SDS-PAGE), then electrophoretically transferred to a solid matrix. Molecules thus “blotted” are visualized directly or indirectly with enzyme-labeled antibodies by enzyme-linked immunosorbent assays (ELISAs) or with isotope-labeled antibodies by radioimmunoassays (RIAs) and radiography. Variations within the 3 basic techniques are numerous; however, the end results are generally good in terms of resolution, sensitivity, fidelity, and specificity.


Schistosoma Mansoni Bordetella Pertussis Electrophoretic Transfer Protein Blotting Nitrocellulose Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.J., P.H. Adams, M.S. Hamilton, and N.J. Alexander (1983). Antisperm antibodies in mouse vasectomy sera react with embryonal teratocarcinoma. J. Immunol. 131: 2908–2912.PubMedGoogle Scholar
  2. Anderson, N.L., S.L. Nance, T.W. Pearson, and N.G. Anderson (1982). Specific antiserum staining of two-dimensional electrophoretic patterns of human plasma proteins immobilized on nitrocellulose. Electrophoresis 3: 135–142.CrossRefGoogle Scholar
  3. Aubertin, A.M., L. Tondre, C. Lopez, G. Obert, and A. Kirn (1983). Sodium dodecyl sulfate-mediated transfer of electrophoretically separated DNA-binding proteins. Anal. Biochem. 131: 127–134.PubMedCrossRefGoogle Scholar
  4. Bittner, M., P. Kupferer, and C.F. Morris (1980). Electrophoretic transfer of proteins and nucleic acids from slab gels to diazobenzyloxymethyl cellulose or nitrocellulose sheets. Anal. Biochem. 102: 459–471.PubMedCrossRefGoogle Scholar
  5. Bjernum, O.J. and K.P. Larsen (1983). Some recent developments of the electroimmunochemical analysis of membrane proteins. Application of zwittergent, Triton X-114 and western blotting technique. In Modern Methods in Protein Chemistry (Tschesche, H., Ed.). Walter de Gruyter and Co., N.Y. 74–124.Google Scholar
  6. Braun, D.K., L. Pereira, B. Norrild, and B. Roizman (1983). Application of denatured, electrophorectically separated, and immobilized lysates of Herpes Simplex virus-infected cells for detection of monoclonal antibodies and for studies of the properties of viral proteins. J. Virol. 46: 103–112.PubMedGoogle Scholar
  7. Burnette, W.N. (1981). “Western Blotting:” Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112: 195–203.PubMedCrossRefGoogle Scholar
  8. Caceres, A., L.I. Binder, M.R. Payne, P. Bender, L. Rebhun and O. Steward (1984). Differential subcellular localization of tubulin and the microtubule-associated protein MAP2 in grain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies. J. Neurosci. 4: 394–410.PubMedGoogle Scholar
  9. Carson, S.D., S.M. Carson., and W.H. Konigsberg (1983). Monoclonal antibody recognizing rabbit IgG (Fab). J. Biol. Chem. 258: 9510–9513.PubMedGoogle Scholar
  10. Chart, H., D.H. Shaw, E.E. Ishiguro, and T.J. Trust (1984). Structural and immunochemical homogeneity of Aeromonas salmonicida lipopolysaccharide. J. Bactrtiol. 158: 16–22.Google Scholar
  11. Colcher, D., P.H. Hand, D. Wunderlich, M. Nuti, Y.A. Teramoto, D. Kufe, and J. Schlom (1983). Monoclonal antibodies to human mammary carcinoma associated antigens and their potential uses for diagnosis, prognosis, and therapy. In Immunodiagnostics Alan R. Liss, Inc., N.Y., 215–258.Google Scholar
  12. Cousland G. and I.R. Poxton (1983). Analysis of lipopolysaccharides of Bacteroides fragilis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and electroblot transfer. FEMS Microbiol. Lett. 20: 461–465.CrossRefGoogle Scholar
  13. Davis, J. and V. Bennett (1983). Brain Spectrin. J. Biol. Chem. 258: 7757–7766.PubMedGoogle Scholar
  14. De Blas, A.L. and H.M. Cherwinski (1983). Detection of antigens on nitrocellulose paper immunoblots with monoclonal antibodies. Anal. Biochem. 133: 214–219.PubMedCrossRefGoogle Scholar
  15. Dziadek, M., H. Richter, M. Schachner, and R. Timpl (1983). Monoclonal antibodies used as probes for the structural organization of the central region of fibronectin. FEBS Lett. 155: 321–325.PubMedCrossRefGoogle Scholar
  16. Erickson, P.F., L.N. Minier, and R.S. Lasher (1982). Quantitative electrophoretic transfer of polypeptides from SDS Polyacrylamide gels to nitrocellulose sheets: A method for their re-use in immunoautoradiographic detection of antigens. J. Immunol. Methods51: 241–249.PubMedCrossRefGoogle Scholar
  17. Fish, A.J., M.C. Lockwood, M. Wong, and R.G. Price (1984). Detection of Goodpasture antigen in fractions prepared from collagenase digests of human glomerular basement membrane. Clin. Exp. Immunol. 55: 58–66.PubMedGoogle Scholar
  18. Flaster, M.S., C. Schley, and B. Zipser (1983). Generating monoclonal antibodies against excised gel bands to correlate immunocytochemical and biochemical data. Brain Res. 277: 196–199.PubMedCrossRefGoogle Scholar
  19. Fujita, S.C., S.L. Zipursky, S. Benzer, A. Ferrus, and S.L. Shotwell (1982). Monoclonal antibodies against the Drosophila nervous system. Proc. Natl. Acad. Sci. USA79: 7929–7933.PubMedCrossRefGoogle Scholar
  20. Gershoni, J.M. and G.E. Palade (1982). Electrophoretic transfer of proteins from sodium dodecyl-sulfate-polyacrylamide gels to a positively charged membrane filter. Anal. Biochem. 124: 396–405.PubMedCrossRefGoogle Scholar
  21. Gershoni, J.M. and G.E. Palade (1983). Protein blotting: Principles and applications. Anal. Biochem. 131: 1–15.PubMedCrossRefGoogle Scholar
  22. Glass, W.F. III, R.C. Briggs, and L.S. Hnilica (1981). Use of lectins for detection of electrophoretically separated’ glycoproteins transferred onto nitrocellulose sheets. Anal. Biochem. 115: 219–224.PubMedCrossRefGoogle Scholar
  23. Glynn, P., H. Gilbert, J. Newcombe, and M.L. Cuzner (1982). Rapid analysis of immunoglobulin isoelectric focusing patterns with cellulose nitrate sheets and immunoperoxidase staining. J. Immunol. Methods51: 251–257.PubMedCrossRefGoogle Scholar
  24. Goldstein, M.E., L.A. Sternberger, and N.H. Sternberger (1983). Microheterogeneity (“neurotypy”) of neurofilament proteins. Proc. Natl. Acad. Sci. USA80: 3101–3105.PubMedCrossRefGoogle Scholar
  25. Granger, B.L., and E. Lazarides (1984). Membrane skeletal protein 4.1 of avian erythrocytes is composed of multiple variants that exhibit tissue-specific expression. Cell37: 595–607.PubMedCrossRefGoogle Scholar
  26. Griesser, H.W., B. Muller-Hill, P. Overath (1983). Characterization of β -galactosidase-lactose-permease chimaeras of Escherichia coli. Eur. J. Biochem. 137: 567–572.PubMedCrossRefGoogle Scholar
  27. Hancock, K. and V.C.W. Tsang (1983). India ink staining of proteins on nitrocellulose paper. Anal. Biochenu 133: 157–162.CrossRefGoogle Scholar
  28. Hawkes, R. (1982). Identification of concanavalin-A binding proteins after sodium dodecyl sulfate gel electyrophoresis and protein blotting. Anal. Biochem. 123: 143–146.PubMedCrossRefGoogle Scholar
  29. Hersh, L.B., B.H. Wainer, and L.P. Andrews (1984). Multiple isoelectric and molecular weight variants of choline acetyltransferase. Artifact or real? J. Biol. Chem. 259: 1253–1258.PubMedGoogle Scholar
  30. Huang, L.S., J.S. Jaeger, and D.C. Usher (1983). Allotypes associated with S. apolipoproteins in rabbits. J. Lipid Res. 24:1485–1493.PubMedGoogle Scholar
  31. Irons, L.E., L.A.E. Ashworth, and P. Wilton-Smith (1983). Heterogeneity of the filamentous haemagglutinin of Bordetella pertussis studies with monoclonal antibodies. J. Gen. Microbiol. 129: 1769–2778.Google Scholar
  32. Klempnauer, K.H., G. Symonds, G.I. Evan, and J.M. Bishop (1984). Subcellular localization of proteins encoded by oncogenes of avian myeloblastosis virus and avian leukemia virus E26 and by the chicken c-myb gene. Cell 37: 537–547.PubMedCrossRefGoogle Scholar
  33. Legocki, R.P. and D.P.S. Verna (1981). Multiple immunoreplica technique: screening for specific proteins with a series of different antibodies using one Polyacrylamide gel. Anal. Biochem. 111: 385–392.PubMedCrossRefGoogle Scholar
  34. Lin, W. and H. Kasamatsu (1983). On the electrotransfer of polypeptides from gels to nitrocellulose membranes. Anal. Biochem. 128: 302–311.PubMedCrossRefGoogle Scholar
  35. Mandrell, R.E. and W.D. Zollinger (1984). Use of a zwitterionic detergent for the restoration of the antibody-binding capacity of electroblotted meningocoecal outer membrane proteins. J. Immunol. Methods67: 1–11.PubMedCrossRefGoogle Scholar
  36. McLellan, T. and J.A.M. Ramshaw (1981). Serial electrophoretic transfers: A technique for the identification of numerous enzymes from single Polyacrylamide gels, Biochem. Genetics19: 647–654.CrossRefGoogle Scholar
  37. Muilerman, H.G., H.G.J. Ter Hart, and W. Van Dijk (1982). Specific detection of inactive enzyme protein after Polyacrylamide gel electrophoresis by a new enzyme-immunoassay method using unspecific antiserum and partially purified active enzyme: Application to rat liver phosphodiesterase I. Anal. Biochem. 120: 46–51.PubMedCrossRefGoogle Scholar
  38. Nelson, W.J. and E. Lazarides (1984). Goblin (ankyrin) in striated muscle: Identification of the potential membrane receptor for erythroid spectrin in muscle cells. Proc. Natl. Acad. Sci. USA81: 3292–3296.PubMedCrossRefGoogle Scholar
  39. Ngo, T.T. and H.W. Lenhoff (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal. Biochem. 105: 389–397.PubMedCrossRefGoogle Scholar
  40. Nielsen, P.J., K.L. Manchester, H. Towbin, J. Gordon, and G. Thomas (1982). The Phosphorylation of ribosoraal protein S6 in rat tissues following cyclohexiraide injection, in diabetes, and after denervation of diaphragm. J. Biol. Chem. 257: 12316–12321.PubMedGoogle Scholar
  41. Ochs, D. (1983). Protein contaminants of sodium dodecyl sulfate Polyacrylamide gels. Anal. Biochem. 135: 470–474.PubMedCrossRefGoogle Scholar
  42. O’Connor, C.G. and L.K. Ashman (1982). Applications of the nitrocellulose transfer technique and alkaline phosphatase conjugated anti-immunoglobulin for determination of the specificity of monoclonal antibodies to protein mixtures. J. Immunol. Methods54: 267–271.PubMedCrossRefGoogle Scholar
  43. Ogata, K., M. Arakawa, T. Kasahara, K. Shiori-Nakano, and K. Hiraoka (1983). Detection of Toxoplasma membrane antigens transferred from SDS-polyacrylamide gel to nitrocellulose with monoclonal antibody and avidin-biotin, peroxidase anti-peroxidase and immunoperoxidase methods. J. Immunol. Methods65: 75–82.PubMedCrossRefGoogle Scholar
  44. Partanen, P., H.J. Turunen, R.A. Paasivuo, and P.O. Leinikki (1984). Immunoblot analysis of Toxoplasma gondii antigens by human immunoglobulins G. M. and A antibodies at different stages of infection. J. Clin. Microbiol. 20: 133–135.PubMedGoogle Scholar
  45. Peppier, M.S. (1984). Two physically and serologically distinct lipopolysaccharide profiles in strains of Bordetella pertussis and their phenotype variants. Infect. Immun. 43: 224–232.Google Scholar
  46. Porter, D.D. and H.G. Porter (1984). A glucose oxidase immunoenzymes stain for the detection of viral antigen or antibody on nitrocellulose transfer blots. J. Immunol. Methods72: 1–9.PubMedCrossRefGoogle Scholar
  47. Raamsdonk, W.V., C.W. Pool, and C. Heyting (1977). Detection of antigens and antibodies by an immuno-peroxidase method applied on thin longitudinal sections of SDS-polyacrylamide gels. J. Immunol. Methods17: 337–348.PubMedCrossRefGoogle Scholar
  48. Ramirez, P., J.A. Bonilla, E. Moreno, and P. Leon (1983). Electrophoretic transfer of viral proteins to nitrocellulose sheets and detection with peroxidase-bound lectins and protein A. J. Immunol. Methods62: 15–22.PubMedCrossRefGoogle Scholar
  49. Reiser J. and J. Wardale (1981). Immunological detection of specific proteins on total cell extracts by fractionation on gels and transfer to diazophenylthioether paper. Eur. J. Biochem. 114: 569–575.PubMedCrossRefGoogle Scholar
  50. Renart, J., J. Reiser, and G. R. Stark (1979). Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: A method for studying antibody specificity and antigen structure. Proc. Natl. Acad. Sci. USA76: 3116–3120.PubMedCrossRefGoogle Scholar
  51. Russell, D.W., W.J. Schneider, T. Yamamoto, K.L. Luskey, M.S. Brown and J.L. Goldstein (1984). Domain map of the LDL receptor: Sequence homology with the epidermal growth factor precursor. Cell37: 577–585.PubMedCrossRefGoogle Scholar
  52. Schott, K.J., V. Neuhoff, B. Nessel, U. Potter, and J. Schroter (1984). Staining of concanavalin A. Reactive glycoproteins on Polyacrylamide gels with horseradish peroxidase — A critical evaluation. Electrophoresis5: 77–83.CrossRefGoogle Scholar
  53. Sharma, S.D., J. Mullenax, F.G. Araujo, H.A. Erlich, and J.S. Remington (1983). Western blot analysis of the antigens of Toxoplasma gondii recognized by human IgM and IgG antibodies. J. Immunol. 131; 977–983.PubMedGoogle Scholar
  54. Southern, E.M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.PubMedCrossRefGoogle Scholar
  55. Stefansson, K., L. Marton, J.P. Antel, R.L. Wollmann, R.P. Roos, G. Chejfec and B.G.W. Arnason (1983). Neuropathy accompanying IgM monoclonal gamopathy. Acta Neuropathol. 59: 255–261.PubMedCrossRefGoogle Scholar
  56. Steinemann, C., M. Fenner, H. Binz, and R.W. Parish (1984). Invasive behavior of mouse sarcoma cells is inhibited by blocking a 37,000 — dalton plasma membrane glycoprotein with Fab fragments. Proc. Natl. Acad. Sci. USA SU 3747–3750.Google Scholar
  57. Sutton, R., C.W. Wrigley, and B.A. Baldo (1982). Detection of IgE-and IgG-binding proteins after electrophoretic transfer from Polyacrylamide gels. J. Immunol. Methods52: 183–194.PubMedCrossRefGoogle Scholar
  58. Symington, J. (1984). Electrophoretic transfer of proteins from two-dimensional gels to sheets and their detection. In Two-dimensional gel electrophoresis of proteins: Methods and applications (Celis, J.E., and R. Bravo, Eds.). Academic Press, New York.Google Scholar
  59. Towbin, H., T. Staehelin, and J. Gordon (1979). Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA74: 4350–4354.CrossRefGoogle Scholar
  60. Towbin, H. and J. Gordon (1984). Immunoblotting and dot immunobinding — current status and outlook. J. Immunol. Methods 72: 313–340.PubMedCrossRefGoogle Scholar
  61. Tsang, V.C.W., B.C. Wilson, and S.E. Maddison (1980). Kinetic studies of a quantitative single-tube enzyme-linked immunosorbent assay. Clin. Chem. 26: 1255–1260.PubMedGoogle Scholar
  62. Tsang, V.C.W., Y. Tao, L. Qui, and H. Xue (1982). Fractionation and quantitation of egg antigens from Schistosoma japonicum by the single-tube kinetic-dependent enzyme-linked immunosorbent assay (k-ELISA): Higher antigen activity in urea-soluble than in aqueous-soluble fractions. J. Parasitol. 68: 1034–1043.PubMedCrossRefGoogle Scholar
  63. Tsang, V.C.W., J.M. Peralta, and A.R. Simons (1983a). Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods, Enzymol. 92: 377–391.CrossRefGoogle Scholar
  64. Tsang, V.C.W., K.R. Tsang, K. Hancock, M.A. Kelly, B.C. Wilson, and S.E. Maddison (1983b). Schistosoma mansoni adult microsomal antigens, a serological reagent. I. Systematic fractionation, quantitation, and characterization of antigenic components. J. Immunol. 130: 1359–1365.PubMedGoogle Scholar
  65. Tsang, V.C.W., K. Hancock, M.A. Kelly, B.C. Wilson, and S.E. Maddison (1983c). Schistosoma mansoni adult microsomal antigens, a serological reagent. II. Specificity of antibody responses to the S. mansoni microsomal antigen (MAMA). J. Immunol. 130: 1366–1370.PubMedGoogle Scholar
  66. Tsang, V.C.W., K. Hancock, and S.E. Madison (1984a). Quantitative capacities of glutaraldehyde and sodium m-periodate coupled peroxidase-anti-human IgG conjugates in enzyme-linked immunoassays. J. Immunol. Methods70: 91–100.PubMedCrossRefGoogle Scholar
  67. Tsang, V.C.W., K. Hancock, S.E. Maddison, A.L. Beatty, and D.M. Moss (1984b). Demonstration of species-specific and cross-reactive components of the adult microsomal antigens from Schistosoma mansoni and S. japonicum (MAMA and JAMA). J. Immunol. 132: 2607–2613.PubMedGoogle Scholar
  68. Tsang, V.C.W., K. Hancock, and A.R. Simons (1985). Calibration of prestained protein molecular weight standards for use in the “Western” or enzyme-linked immunoelectrotransfer blot techniques. Anal. Biochem. 143: (in press).Google Scholar
  69. Turner, B.M. (1983). The use of alkaline-phosphate-conjugated second antibody for the visualization of electrophoretically separated proteins recognized by monoclonal antibodies. J. Immunol. Methods63: 1–6.PubMedCrossRefGoogle Scholar
  70. Van Wyke, K.L., J.W. Yewdell, L.J. Reck, and B.R. Murphy (1984). Antigenic characterization of influenza A virus matrix protein with monoclonal antibodies. J. Virol. 49: 248–252.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Victor C. W. Tsang
    • 1
  • George E. Bers
    • 2
  • Kathy Hancock
    • 1
  1. 1.Division of Parasitic Diseases, Center for Infectious Diseases, Centers for Disease Control, Public Health ServiceU.S. Department of Health and Human ServicesAtlantaUSA
  2. 2.Bio-Rad LaboratoriesResearch Product GroupRichmondUSA

Personalised recommendations