Fluorimetric Measurements in Enzyme Immunoassays

  • Kristin H. Milby

Abstract

The sensitivity of enzyme immunoassays (EIAs) depends on the specificity and avidity of the immunochemical reagents, the specific activity of the enzyme label, and the detection limit of the enzyme product. When the antibody and enzyme systems have been optimized, the ability to detect the enzyme product controls assay sensitivity. When applicable, one of the simplest and most sensitive quantitative methods is fluorimetry. Colorimetry is limited to the parts per billion (10 -3µg/mL) level whereas fluorimetry achieves parts per trillion (10 6µg/mL) and, with the use of laser excitation, even sub-parts per trillion detection limits (Bradley and Zare, 1976, and Imasaka and Zare, 1979). This advantage is because fluorimetry measures a signal increase above relatively low background luminescence while colorimetry measures a small decrease due to absorbance from a large signal of transmitted light. Using fluorimetric microscopy, Rotman (1961) was able to detect single molecules of the enzyme β-galactosidase. Under more practical circumstances, the detection limits of fluorimetry are frequently limited by background fluorescence such as that arising from serum or other biological samples.

Keywords

High Performance Liquid Chromatography Testosterone Oestradiol NADH Gelatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, A., and Ali R. (1983), Enzyme-linked Immunosorbent Assay for Anti-DNA Antibodies Using Fluorogenic and Colorigenic Substrates, J. Immunol. Meth., 56:341–346.CrossRefGoogle Scholar
  2. Arakawa, H., Maeda, M., Tsuji, A., Ishii, S., Naruse, H., and Kleinhammer, G. (1982), Fluorophotometric Enzyme Immunoassay of Thyroxine in Dried Blood Samples on Filter Paper, Bunseki Kagaku, 31:E55–E61.CrossRefGoogle Scholar
  3. Arakawa, H., Maeda, M., Tsuji, A., Naruse, H., Suzuki, E., and Kambegawa, A. (1983), Fluorescence Enzyme Immunoassay of 17a-hydroxyprogesterone in Dried Blood Samples on Filter Paper and Its Application to Mass Screening for Congenital Adrenal Hyperplasia, Chem. Pharm. Bull., 31:2724–2731.PubMedCrossRefGoogle Scholar
  4. Bradley, A. B., and Zare, R. N. (1976), Laser Fluorimetry. Sub-part-per-trillion Detection of Solutes, J. Am. Chem. Soc., 98:620–621.CrossRefGoogle Scholar
  5. Butler, H. T., and Poole, C. F. (1983), Optimization of A Scanning Densitometer for Fluorescence Detection in High Performance Thin-layer Chromatography, J. High Res. Chrom. Chrom. Comm., 6:77–81.CrossRefGoogle Scholar
  6. Forghani, B., Dennis, J., and Schmidt, N. J. (1980), Visual Reading Reading of Enzyme Immunofluorescence Assays for Human Cytomegalovirus Antibodies, J. Clin. Microbiology, 12:704–708.Google Scholar
  7. Guilbault, G. G. (1968), Use of Enzymes in Analytical Chemistry, Anal. Chem., 40-.459R–471R.PubMedCrossRefGoogle Scholar
  8. Guilbault, G. G., Brignac, P. J., and Juneau, M. (1968), New Substrates for the Fluorometric Determination of Oxidative Enzymes, Anal. Chem., 40:1256–1263.PubMedCrossRefGoogle Scholar
  9. Guilbault, G. G., Brignac, P., and Zimmer, M. (1968), Homovanillic Acid as a Fluorometric Substrate for Oxidative Enzymes, Anal. Chem., 40:190–196.PubMedCrossRefGoogle Scholar
  10. Hinsberg, W. D., Milby, K. H., Lidofsky, S. D., and Zare, R. N. (1981), Application of Laser Fluorimetry to Enzyme-linked Immunoassay, Soc. Photo-optical Instrumentation Engineers, 286:132–138.Google Scholar
  11. Hinsberg, W. D., Milby, K. H., and Zare, R. N. (1981), Determination of Insulin in Serum By Enzyme Immunoassay with Fluorimetric Detection, Anal. Chem., 53:1509–1512.PubMedCrossRefGoogle Scholar
  12. Imasaka, T., and Zare, R. N. (1979), Enzyme Amplification Laser Fluorimetry, Anal. Chem., 51:2082–2085.CrossRefGoogle Scholar
  13. Ishikawa, E., and Kato, K. (1978), Ultrasensitive Enzyme Immunoassay, Scand. J. Immunol., 8 Suppl. 7:43–55.CrossRefGoogle Scholar
  14. Kato, K., Fukui, H., Hamaguchi, Y. and Ishikawa, E. (1976), Enzyme-linked Immunoassay: Conjugation of the FAB’ Fragment of Rabbit IgG with β-D-galactosidase from E. Coli and Its Use and Its Use for Immunoassay, J. Immunology, 116:1554–1560.Google Scholar
  15. Kato, K., Hamaguchi, Y., Fukui, H. and Ishikawa, E. (1976), Enzyme-linked Immunoassay: Conjugation of Rabbit Anti-(Human Immunoglobulin G) Antibody with β-D-galactosidase from Escherichia Coli and Its Use for Human Immunoglobulin G Assay, Eur. J. Biochem., 62:285–292.PubMedCrossRefGoogle Scholar
  16. Kato, K., Hamaguchi, Y., Fukui, H. and Ishikawa, E. (1975a), Enzyme-linked Immunoassay: Novel Method for Synthesis of the Insulin-β-D-galactosidase Conjugate and its Applicability for Insulin Assay, J. Biochem., 78:235–237.PubMedGoogle Scholar
  17. Kato, K., Hamaguchi, Y., Fukui, H., and Ishikawa (1975b), Enzyme-linked Immunoassay: A Simple Method for Synthesis of the Rabbit Antibody-β-D-galactosidase Complex and Its General Applicability, J. Biochem., 78:423–425.PubMedGoogle Scholar
  18. Kato, N., Ishii, S., Naruse, H., Irie, M. and Tsuji, A. (1980), Fluorophotometric Enzyme Immunoassay of Thyroid-Stimulating Hormone Using Peroxidase as Label, J. Pharmacobio-Dyn, 3:S-28.Google Scholar
  19. Kato, N., Naruse, H., Irie, M. and Tsuji, A. (1979), Fluorophotometric Enzyme Immunoassay of Thyroid-Stimulating Hormone, Analyt. Biochem., 96:419–425.PubMedCrossRefGoogle Scholar
  20. Kato, K., Umeda, Y., Suzuki, F., Hayashi, D. and Kosaka, A. (1979), Evaluation of a Solid-Phase Enzyme Immunoassay for Insulin in Human Serum, Clin. Chem., 25:1306–1308.PubMedGoogle Scholar
  21. Kikutani, M., Ishiguro, M., Kitagawa, T., Imamura, S. and Miura, S. (1978), Enzyme Immunoassay of Human Chorionic Gonadotropin Employing β-galactosidase as Label, J. Clin. Endocrinol, and Metab., 47:980–984.CrossRefGoogle Scholar
  22. Kitagawa, T. and Aikawa, T. (1976), Enzyme Coupled Immunoassay of Insulin Using a Novel Coupling Reagent, J. Biochem., 79:233–236.PubMedGoogle Scholar
  23. Konijn, A. M., Levy, R., Link, G. and Hershko, C. (1982), A Rapid and Sensitive ELISA for Serum Ferritin Employing a Fluoro-genic Substrate, J. Immunological Methods, 54:297–307.CrossRefGoogle Scholar
  24. Leaback, D. H. and Creme, S. (1980), A New Experimental Approach to Fluorometric Enzyme Assays Employing Disposable Micro-Reaction Chambers, Analyt. Biochem., 106:314–321.PubMedCrossRefGoogle Scholar
  25. Leaback, D. H. and Creme, S. (1981), Extremely Economical Micro-ERMA Procedures for Performing ‘Sequential’ Fluorogenic Enzyme Assays and Fluorogenic Enzyme Immunoassays on Human Serum, Biochem. Soc. Trans., 9:580.Google Scholar
  26. Lidofsky, S. D. (1980), Laser Fluorescence Immunoassay, Ph.D. Dissertation, Columbia University.Google Scholar
  27. Lidofsky, S. D., Hinsberg, W. D. and Zare, R. N. (1981), Enzyme-linked Sandwich Immunoassay for Insulin Using Laser Fluorimetric Detection, Proc. Natl. Acad. Sci. USA, 78:1901–1905.PubMedCrossRefGoogle Scholar
  28. Lidofsky, S. D., Imasaka, T. and Zare, R. N. (1979), Laser Fluorescence Immunoassay of Insulin, Anal. Chem., 51:67–69.CrossRefGoogle Scholar
  29. Matsuoka, K., Maeda, M. and Tsuji, A. (1979), Fluorescence Enzyme Immunoassay for Insulin Using Peroxidase-Tyramine-Hydrogen Peroxide, Chem. Pharm. Bull., 27:2345–2350.PubMedCrossRefGoogle Scholar
  30. Neurath, A. R. and Strick, N. (1981), Enzyme-linked Fluorescence Immunoassays Using β-galactosidase and Antibodies Covalently Bound to Polystyrene Plates, J. Virological Methods, 3:155–165.CrossRefGoogle Scholar
  31. Numazawa, M., Haryu, A., Kurosaka, K. and Nambara, T. (1977), Picogram Order Enzyme Immunoassay of Oestradiol, FEBS Letts., 79:396–398.CrossRefGoogle Scholar
  32. Rotman, B. (1961), Measurement of Activity of Single Molecules of β-D-galactosidase, Proc. Natl. Acad. Sci. USA, 47:1981–1991.PubMedCrossRefGoogle Scholar
  33. Sato, S. and Yamamoto, I. (1983), Enzyme Immunoassays for β-adrenoreceptor Blocking Agent, Befunolol and Its Main Metabolite, Ml, J. Immunoassay, 4:351–371.PubMedCrossRefGoogle Scholar
  34. Tsuji, A., Maeda, M. Arakawa, H., Matsuoka, K., Kato, N., Naruse, N. and Irie, M. (1978), Enzyme Immunoassay of Hormones and Drugs by Using Fluorescence and Chemilumenescence Reaction, Enzyme Labelled Immunoassay of Hormones and Drugs (Pal, S.B., Ed.), Walter de Gruyter, Berlin and New York: 327–339.Google Scholar
  35. Tiirkes, A. O., Tiirkes, A., Joyce, B. G. and Riad-Fahmy, D. (1980), A Sensitive Enzyme Immunoassay with a Fluorimetric End-Point for the Determination of Testosterone in Female Plasma and Saliva, Steroids, 35:89–101.CrossRefGoogle Scholar
  36. Tiirkes, A. O., Tiirkes, A., Read, G. F. and Fahmy, D. R. (1979), A Sensitive Fluorometric Enzyme Immunoassay for Testosterone in Plasma and Saliva, J. Endocrinol., 83:31P.CrossRefGoogle Scholar
  37. Watanabe, N., Niitsu, Y., Ohtsuka, S., Koseki, J., Kohgo, Y., Urushizaki, I., Kato, K. and Ishikawa, E. (1979), Enzyme Immunoassay for Human Ferritin, Clin. Chem., 25:80–82.PubMedGoogle Scholar
  38. Yamamoto, I. and Iwata, K. (1982), Enzyme Immunoassay for Clenbuterol, an ß2-Adrenergic Stimulant, J. Immunoassay, 3:155–171.PubMedCrossRefGoogle Scholar
  39. Yamamoto, I., Takai, T., and Tsuji, J. (1982), Enzyme Immunoassay for Cytidine 3’,5’-Cyclic Monophosphate (Cyclic CMP). Immunopharmacology, 4:331–340.PubMedCrossRefGoogle Scholar
  40. Yamamoto, I., and Tsuji, J. (1981), Enzyme Immunoassay of Cyclic Adenosine 3’,5’-Monophosphate (AMP) Using β-D-galactosidase as Label, Immunopharmacology, 3:53–59.PubMedCrossRefGoogle Scholar
  41. Yolken, R. H. and Leister, F. J. (1982), Comparison of Fluorescent and Colorigenic Substrates for Enzyme Immunoassays, J. Clin. Microbiology, 15:757–760.Google Scholar
  42. Yolken, R. H. and Stopa, P. J. (1979), Enzyme-linked Fluorescence Assay: Ultrasensitive Solid-Phase Assay for Detection of Human Rotovirus, J. Clin. Microbiology, 10:317–321.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Kristin H. Milby
    • 1
  1. 1.Monsanto CompanySt. LouisUSA

Personalised recommendations