Papova Viruses and Cancer Genes

  • C. Streuli
  • Beverly E. Griffin
Part of the NATO ASI Series book series (NSSA, volume 91)


The group of small, double-stranded DNA tumour viruses, classified as papova viruses, have received considerable attention following the discovery of the first member of this species, papilloma virus, in 1933 by Shope in rabbits. Since Shope’s discovery, papilloma viruses have been recovered from the warts of many other animals, including humans (for review, see reference 1). The other members of the species which have provided the name for this class of viruses, polyoma, a mouse virus, and the vacuolating virus of rhesus monkeys, SV40, were not isolated until 1953 and 1960, respectively (for review, see references 2–4). Since then a number of human papova viruses have been discovered (for review, see reference 5) and most recently, a papovavirus of hamsters (6) was isolated. Thus this class of viruses, all capable of producing cellular transformation in appropriate tissue culture systems, or tumours in suitable animal models, is ubiquitous throughout the animal kingdom. The association with malignancies has provided the stimulus for many different studies. The very small sizes of the viruses (between about 5,000 and 10,000 base pairs) offers the possibility that the virus-host cell interactions that ultimately result in production of a cancer-like cell can eventually be elucidated.


Cold Spring Harbor Simian Virus Cellular Transformation Polyoma Virus Host Range Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    ZUR HAUSEN, H. (1981). Papilloma viruses. In: “DNA Tumor Viruses” J. Tooze, ed., Second edition, Part 2, revised. Cold Spring Harbor, New York, p. 371.Google Scholar
  2. 2).
    PONTEN, J. (1971). Spontaneous and virus induced transformation in cell culture. In: “Virology Monographs”, S. Gard, C. Hallauer & K.F. Meyer, eds.Google Scholar
  3. 3).
    GRIFFIN, B.E. (1981). Structure and genomic organization of SV40 and polyoma virus. In:“DNA Tumor Viruses, J. Tooze, ed., Second edition, Part 2, revised, Cold Spring Harbor, New York, p. 205.Google Scholar
  4. 5).
    PADGETT, B. (1981). Human papova viruses. In: “DNA Tumor Viruses”, J. Tooze, ed., Second edition, Part 2, revised. Cold Spring Harbor, New York, p. 339.Google Scholar
  5. 6).
    SCHERNECK, S., BÖTTGER, M. & FEUNTEUN, J. (1979). Studies on the DNA of an oncogenic papova virus of Syrian Hamster. Virol. 96, 100.CrossRefGoogle Scholar
  6. 7).
    GRIFFITH, J. (1975). Chromatin structure: Deduced from a mini-chromosome. Science, 187, 1202CrossRefGoogle Scholar
  7. CREMISI, C., PIGNATI, P.F., CROISSANT, O. & YANIV, M. (1976). Chromatin-like structures in polyoma virus and simian virus 40 lytic cycle. J. Virol., 17, 204.Google Scholar
  8. 8).
    GRUSS, P., DHAR, R. & KHOURY, G. (1981). Simian virus 40 tandem repeated sequences as an element of the early promoter, Proc. Natl. Acad. Sci. USA, 78, 943CrossRefGoogle Scholar
  9. 9).
    BENOIST, C. & CHAMBON, P. (1981). In vivo sequence requirements of the SV40 early promoter region, Nature, 290, 304.Google Scholar
  10. DE VILLIERS, J. & SCHAFFNER, W. (1981). A small segment of polyoma virus DNA enhances the expression of a cloned B-globin gene over a distance of 1400 base pairs, Nucl. Acids Res., 9, 6251.CrossRefGoogle Scholar
  11. SPANDIDOS, D.A. & WILKIE, N.M. (1983). Host-specificities of papilloma virus, moloney sarcoma virus and simian virus 40 enhancer sequences, EMBO J., 2, 1193.Google Scholar
  12. 9).
    LUSKY, M. & BOTCHAN, M.R. (1984). Characterization of the bovine papilloma virus plasmid maintenance sequences. Cell, 36, 391.CrossRefGoogle Scholar
  13. 10).
    DURST, M., GISSMANN, L., IKENBERG, H. & ZUR HAUSEN, H. (1983). A papilloma DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographical regions. Proc. Natl. Acad. Sci. USA, 80, 3812.CrossRefGoogle Scholar
  14. 11).
    FERGUSON, J. & DAVIS, R.W. (1975). An electron microscopic method for studying and mapping the region of weak sequence homology between simian virus 40 and polyoma DNAs. J. Mol. Biol., 94, 135.CrossRefGoogle Scholar
  15. 12).
    HOWLEY, P.M., ISRAEL, M.A., LAW, M.-F. & MARTIN, M.A. (1979). A rapid method for detecting and mapping homology betweeen heterologous DNAs. J. Biol. Chem., 254, 4876.Google Scholar
  16. 13).
    SHAH, K.V., OZER, H.L., GHAZEY, H.N. & KELLY, T.J. (Jr)(1977). Common structural antigen of papova viruses of the simian virus 40 - polyoma subgroup. J. Virol., 21, 179.Google Scholar
  17. 14).
    McCORMICK, F., LANE, D.P. & DILWORTH, S.M. (1982). Immunological cross-reaction between large T-antigens of SV40 and polyoma virus. Virol., 116, 382.CrossRefGoogle Scholar
  18. 15).
    FIERS, W., CONTRERAS, R., HAEGEMAN, G., ROGIERS, R., VAN DE VOORDE, E., VAN HERREWEGHE, J., VOLCKAERT, G. & YSEBAERT, M. (1978). Complete nucleotide sequence of SV40 DNA. Nature, 273, 113.CrossRefGoogle Scholar
  19. 16).
    REDDY, V.B., THIMMAPPAYA, B., DHAR, T., SUBRAMANIAN, K.N., ZAIN, B.S., PAN, J., GHOSH, P.K., CELMA, M.L. & WEISSMAN, S.M. (1978). The genome of simian virus 40. Science, 200, 494.CrossRefGoogle Scholar
  20. 17).
    DEININGER, P. ESTY, A., LaPORTE, P., HSU, H. & FRIEDMAN, T. (1981). The nucleotide sequence and restriction enzyme sites of the polyoma genome. Nucl. Acids Res., 8, 855.Google Scholar
  21. 18).
    SOEDA, E., ARRAND, J.R., SMOLAR, N., WALSH, J. & GRIFFIN, B.E. (1980). Coding potential and regulatory signals of the polyoma virus genome. Nature, 283, 445.CrossRefGoogle Scholar
  22. 19).
    GRIFFIN, B.E. & DILWORTH, S.M. (1983). Polyoma virus: An overview of its unique properties. In: “Advances in Cancer Research” G. Klein & S. Weinhouse, eds., Academic Press, Inc., New York, p. 183.Google Scholar
  23. 20).
    YANG, R.C.A. & WU, R. (1979). BK virus DNA: complete nucleotide sequence of a human tumor virus. Science, 206, 456.CrossRefGoogle Scholar
  24. 21).
    ACHESON, N.H. (1981). Lytic cycle of SV40 and polyoma virus. In: “DNA Tumor Viruses”, J. Tooze, ed., Second edition, Part 2, revised, Cold Spring Harbor, New York, p. 125.Google Scholar
  25. 22).
    TEGTMEYER, P. (1981). Genetics of SV40 and polyoma virus. In: “DNA Tumor Viruses”, J. Tooze, ed., Second edition, Part 2, revised, Cold Spring Harbor, New York, p. 297.Google Scholar
  26. 23).
    ITO, Y., BROCKLEHURST, J.T. & DULBECCO, R. (1977). Virus-specific proteins in the plasma membrane of cells lytically infected or transformed by polyoma virus. Proc. Natl. Acad. Sci. USA, 74, 4666.CrossRefGoogle Scholar
  27. 24).
    BENJAMIN, T.L. (1970). Host range mutants of polyoma virus. Proc. Natl. Acad. Sci. USA, 67, 394CrossRefGoogle Scholar
  28. STANELONI, R.J., FLUCK, M.M. & BENJAMIN, T.L. (1977). Host range selection of transformation-defective hr-t mutants of polyoma virus. Virol., 77, 598.CrossRefGoogle Scholar
  29. 25).
    SOEDA, E. & GRIFFIN, B.E. (1978). Sequences from the genome of a non-transforming mutant of polyoma virus. Nature, 276, 294CrossRefGoogle Scholar
  30. SILVER, J., SCHAFFHAUSEN, B. & BENJAMIN, T. (1978). Tumor antigens induced by non-transforming mutants of polyoma virus. Cell, 15, 485.CrossRefGoogle Scholar
  31. 26).
    CARMICHAEL, G.G. & BENJAMIN, T.L. (1980). Identification of DNA sequence changes leading to loss of transforming ability in polyoma virus. J. Biol. Chem., 255, 230.Google Scholar
  32. 27).
    DING, D., DILWORTH, S.M. & GRIFFIN, B.E. (1982). mir-mutants of polyoma virus. J. Virol., 44, 1080.Google Scholar
  33. 28).
    GRIFFIN, B.E. & MADDOCK, C. (1979). New classes of viable deletion mutants in the early region of polyoma virus. J. Virol., 31, 645Google Scholar
  34. GRIFFIN, B.E., ITO, Y., NOVAK, U., SPURR, N., DILWORTH, S.M., SMOLAR, N., POLLACK, R., SMITH, K. & RIFKIN, D.B. (1980). Early mutants of polyoma virus (dl 8 and dl 23) with altered transformation properties: Is polyoma virus middle T-antigen a transforming gene product? Cold Spring Harbor Symp. Quant. Biol., 44, 271.CrossRefGoogle Scholar
  35. 29).
    CHOUDHURY, K., LIGHT, S.E., GARON, C.F., ITO, Y. & ISRAEL, M. A. (1980). A cloned polyoma DNA fragment representing the 5’ half of the early gene is oncogenic. J. Virol., 36, 566Google Scholar
  36. HASSELL, J.A., TOPP, W.E., RIFKIN, D.B. & MOREAU, P.E. (1980). Transformation of rat embryo fibroblasts by cloned polyoma virus DNA fragments containing only part of the early region. Proc. Natl. Acad. Sci. USA, 77, 3978CrossRefGoogle Scholar
  37. NOVAK, U., DILWORTH, S.M. & GRIFFIN, B.E. (1980). Coding capacity of a 35% fragment of the polyoma virus genome is sufficient to initiate and maintain cellular transformation. ibid., 77, 3278.Google Scholar
  38. 30).
    NOVAK, U. & GRIFFIN, B.E. (1981). Requirement for the C-terminal region of middle T-antigen in cellular transformation by polyoma virus. Nucl. Acids Res., 9, 2055CrossRefGoogle Scholar
  39. CARMICHAEL, G.G., SCHAFFHAUSEN, B.F., DORSKY, K.I., OLIVER, D.B. & BENJAMIN, T. L. (1982). Carboxy terminus of polyoma middle-sized tumor antigen is required for attachment to membranes, associated protein kinase activities and cell transformation. Proc. Natl. Acad. Sci., 79, 3579.CrossRefGoogle Scholar
  40. 31).
    NOVAK, U. & GRIFFIN, B.E. (1981). Cellular transformation by polyoma virus. In: “Int. Cell Biology 1980–1981”. H.G. Schweiger, ed., Springer-Verlag, Berlin, p. 448.CrossRefGoogle Scholar
  41. 32).
    ITO, Y. & SPURR, N. (1980). Polyoma virus T antigens expressed in transformed cells: Significance of middle T antigen in transformation. Cold Spring Harbor Symp. Quant. Biol.,44, 149.Google Scholar
  42. 33).
    TREISMAN, R., NOVAK, U., FAVALORO, J. & KAMEN, R. (1981). Transformation of rat cells by an altered polyoma virus genome expressing only the middle-T protein. Nature, 292, 595CrossRefGoogle Scholar
  43. ZHU, Z., VELDMAN, G.M., COWIE, A., CARR, A., SCHAFFHAUSEN, B. & KAMEN, R. (1984). Construction and functional characterization of polyoma virus genomes that separately encode the three early antigens. J. Virol., 51, 170.Google Scholar
  44. 34).
    RASSOULZADEGAN, M., NAGHASHFAR, Z., COWIE, A., CARR; A., GRISONI, M., KAMEN, R. & CUZIN, F. (1983). Expression of the large T protein of polyoma virus promotes the establishment in culture of ‘normal’ rodent fibroblast cell lines. Proc. Natl. Acad. Sci. USA, 80, 4354.CrossRefGoogle Scholar
  45. 35).
    ASSELIN, C., GÉLINAS, C., BRANTON, P.E. & BASTIN, M. (1984). Polyoma middle T antigen requires cooperation from another gene to express the malignant phenotype in vivo. Mol. and Cell. Biol., 4, 755.Google Scholar
  46. 36).
    CUZIN, F. (1984). The polyoma virus oncogenes. Co-ordinated functions of three distinct proteins in the transformation of rodent cells in culture. Biochim. Biophys. Acta, 781, 193.Google Scholar
  47. 37).
    SCHAFFHAUSEN, B. (1982). Transforming genes and gene products of polyoma and SV40. In: “CRC Crit. Rev. Biochem.”, 13, 215.Google Scholar
  48. 38).
    CLAYTON, C.E., MURPHY, D., LOVETT, M. & RIGBY, P.W. (1982). A fragment of the SV40 large T-antigen gene transforms. Nature, 299, 59CrossRefGoogle Scholar
  49. COLBY, W.W. & SHENK, T. (1982). Fragments of the simian virus 40 transforming gene facilitate transformation of rat embryo cells. Proc. Natl. Acad. Sci. USA, 79, 5189CrossRefGoogle Scholar
  50. GRAESSMANN, M., GRAESSMANN, A. & MUELLER, C. (1980). Monkey cells transformed by SV40 DNA fragments: Flat revertants synthesize large and small T antigens. Cold Spring Harbor Symp. Quant. Biol., 44, 605.CrossRefGoogle Scholar
  51. 39).
    DEPPERT, W., HANKE, K. & HENNING, R. (1980). Simian virus 40 T-antigen-related cell surface antigen: serological demonstration on simian virus 40-transformed monolayer cells in situ. J. Virol., 35, 505Google Scholar
  52. SANTOS, M. & BUTEL, J. (1982). Detection of a complex of SV40 large tumor antigen and 53K cellular protein on the surface of SV40-transformed mouse cells. J. Cell. Biochem., 19, 127CrossRefGoogle Scholar
  53. STAUFENBIEL, M. & DEPPERT, W. (1983). Different structural systems of the nucleus are targets for SV40 large T-antigen. Cell, 33, 173.CrossRefGoogle Scholar
  54. 40).
    ELLMAN, M., BIKEL, I., FIGGE, J., ROBERTS, T., SCHLOSSMAN, R. & LIVINGSTON, M. (1984). Localization of the simian virus 40 small T antigen in the nucleus and cytoplasm of monkey and mouse cells. J. Virol., 50, 623.Google Scholar
  55. 41).
    DILWORTH, S.M. & GRIFFIN, B.E. (1983). The transforming gene of polyoma virus. Arch. Geschulstforsch., 53, 187.Google Scholar
  56. 42).
    DILWORTH, S.M. (1983). Protein kinase activities associated with distinct antigenic forms of polyoma virus middle T antigen. EMBO J., 1, 1319.Google Scholar
  57. 43).
    BOURGAUX, P., SYLLA, B.S. & CHARTRAND, P. (1982). Excision of polyoma virus DNA from that of a transformed mouse cell: Identification of a hybrid molecule with direct and inverted repeat sequences at the viral-cellular joints. Virol., 122, 84.CrossRefGoogle Scholar
  58. 44).
    DING, D., JONES, M.D., LEIGH-BROWN, A. & GRIFFIN, B.E. (1982). Mutant din-21, a variant of polyoma virus containing a mouse DNA sequence in the viral genome. EMBO J., 1, 461.Google Scholar
  59. 45).
    FEUNTEUN, J., SOMPAYRAC, L., FLUCK, M. & BENJAMIN, T. (1976). Localization of gene functions in polyoma virus DNA. Proc. Natl. Acad. Sci. USA, 73, 4169.CrossRefGoogle Scholar
  60. 46).
    DILWORTH, S.M. & GRIFFIN, B.E. (1982). Monoclonal antibodies against polyoma virus tumor antigens. Proc. Natl., Acad. Sci., 79, 1059.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • C. Streuli
    • 1
  • Beverly E. Griffin
    • 2
  1. 1.Imperial Cancer Research FundLincoln’s Inn FieldsLondonEngland
  2. 2.Department of Virology, Royal Postgraduate Medical SchoolHammersmith HospitalLondonEngland

Personalised recommendations