Identification and Localization of Phosphoproteins in v-onc Transformed Fibroblasts by Means of Phosphotyrosine Antibodies

  • P. M. Comoglio
  • D. Cirillo
  • M. F. Di Renzo
  • R. Ferracini
  • F. G. Giancotti
  • S. Giordano
  • L. Naldini
  • G. Tarone
  • P. C. Marchisio
Part of the NATO ASI Series book series (NSSA, volume 91)


The transformation process induced by several retroviruses, includ­ing Rous sarcoma virus (RSV), Feline sarcoma virus (FeSV), Fujinami avian sarcoma virus (FSV) and Abelson murine leukemia virus (AMuLV), is triggered and maintained by the action of v-onc genes which all code for transforming proteins with associated tyrosine kinase activity (for review see 1). Since protein phosphorylation seems to be invariably associated with molecular mechanism(s) involved in growth control and in the neoplastic transformation triggered by these retroviruses, the identification of cellular proteins phosphorylated at tyrosine residues is an issue of major importance. Putative substrates of tyrosine kinases have been identified by means of conventional techniques such as bidimensional separation of total cellular proteins followed by phosphoaminoacid analysis. However, these techniques seem to have intrinsic limitations - as shown also by the failure to identify well known substrates - such as the transforming proteins themselves, which are known to be heavily tyrosine-phosphorylated. The difficulties are generated by the fact that phosphotyrosine represents less than 2% of phospho­aminoacids also in transformed cells (being less than 0.2% in nor­mal cells); in addition it has been shown that, only a minor frac­tion, i.e. less than 10%, of each substrate molecules of v-onc coded kinases, is phosphorylated at tyrosine even in fully trans­formed cells.


Rous Sarcoma Virus Phenyl Phosphate Adhesion Plaque Transforming Protein Detergent Insoluble Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    BISHOP, J.M. (1983). Cellular oncogenes and retroviruses. Ann. Rev. Biochem., 52, 301–316.CrossRefGoogle Scholar
  2. 2).
    ROSS, A.H., BALTIMORE, D., EISEN, H.N. (1981). Phosphotyrosine containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature, 294, 654–656.CrossRefGoogle Scholar
  3. 3).
    TABACHNICK, M., SOBOTKA, H. (1960). A spectrophotometric study of the coupling of diazotized arsanilic acid with proteins. J. Biol. Chem., 235, 1051–1054.Google Scholar
  4. 4).
    COMOGLIO, P.M., DI RENZO, M.F., NALDINI, L., MARCHISIO, P.C. (1984). Identification of oncogene coded kinase cellular targets by phosphotyrosine antibodies. In: “Recent Advances in Tumor Immunology: From oncogenes to tumor antigens”. G. Giraldo, ed., Elsevier, Amsterdam.Google Scholar
  5. 5).
    PRAT, M., COMOGLIO, P.M. (1976). A solid-state competitive binding radioimmunoassay for measurement of antigens solubilized from membranes. J. Immunol. Methods, 9, 267–272.CrossRefGoogle Scholar
  6. 6).
    TARONE, G., CIRILLO, D., GIANCOTTI, F.G., COMOGLIO, P.M., MARCHISIO, P.C. (1984). Rous sarcoma virus transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp. Cell Res., submitted for publication.Google Scholar
  7. 7).
    COMOGLIO, P.M., DI RENZO, M.F., TARONE, G., GIANCOTTI, F.G., NALDINI, L., MARCHISIO, P.C. (1984). Detection of phosphotyrosine-containing proteins in the detergent-insoluble fraction of RSV-transformed fibroblasts by azobenzene phosphonate antibodies. EMBO J., 3, 483–487.Google Scholar
  8. 8).
    TOWBIN, H., STAEHELIN, T., GORDON, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci.. USA, 76, 4350–4354.CrossRefGoogle Scholar
  9. 9).
    BURNETTE, W.N. (1981). “Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodined Protein A. Anal. Biochem., 112, 195–203.Google Scholar
  10. 10).
    BURR, J., DREYFUSS, G., PENMAN, S., BUCHANAN, J. (1980). Association of the src gene product of Rous sarcoma virus with cytoskeletal structure of chicken embryo fibroblasts. Proc. Natl. Acad. Sci. USA, 77, 3484–3488.CrossRefGoogle Scholar
  11. 11).
    GACON, G., GISSELBRECHT, S., PIAU, J.P., FISZMAN, M.Y., FISHER, S. (1982). Phosphorylation of the subcellular matrix in cells tranformed by Rous sarcoma virus. Eur. J. Biochem., 125, 453–456.CrossRefGoogle Scholar
  12. 12).
    BOSS, M.A., DREYFUSS, G., BALTIMORE, D. (1981). Localization of the Abelson murine leukemia virus protein in a detergent insoluble subcellular matrix: architecture of the protein. J. Virol., 40, 472–479.Google Scholar
  13. 13).
    FELDMAN, R.A., WANG, E., HANAFUSA, H. (1983). Cytoplasmic localization of the transforming protein of Fujinami sarcoma virus: salt sensitive association with subcellular components. J. Virol. 45, 782–789.Google Scholar
  14. 14).
    WITTE, O.N., DASGUPTA, A., BALTIMORE, D. (1980). Abelson murine leukemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature, 283, 826–832.CrossRefGoogle Scholar
  15. 15).
    FELDMAN, R.A., HANAFUSA, T., HANAFUSA, H. (1980). Characterization of protein kinase activity associated with the transforming gene product of Fujinami sarcoma virus. Cell, 22, 757–765.CrossRefGoogle Scholar
  16. 16).
    VAN DE VEN, W.J.M., REYNOLDS, F.H., STEPHENSON, J.R. (1980). The non structural components of polyproteins encoded by replication defective mammalian transforming retroviruses are phosphorylated and have associated protein kinase activity. Virology, 101, 185–197.CrossRefGoogle Scholar
  17. 17).
    COLLETT, M.S., PURCHIO, A.F., ERIKSON, R.L. (1980). Avian sarcoma virus-transforming protein pp60src shows protein kinase activity specific for tyrosine. Nature, 285, 167–168.CrossRefGoogle Scholar
  18. 18).
    HUNTER, T., SEFTON, B. (1980). Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA, 77, 1311–1315.CrossRefGoogle Scholar
  19. 19).
    LEVINSON, A.D., OPPERMANN, H., LEVINTOW, L., VARMUS, H.E., BISHOP, J.M. (1978). Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell, 15, 561–572.CrossRefGoogle Scholar
  20. 20).
    MARCHISIO, P.C., DI RENZO, M.F., COMOGLIO, P.M. (1984). Immunofluorescence localization of phosphotyrosine containing proteins in RSV-transformed mouse fibroblasts. Exp. Cell Res. 154, 112–124.CrossRefGoogle Scholar
  21. 21).
    EDELMAN, G.M., YAHARA, I. (1976). Temperature sensitive changes in surface modulating assemblies of fibroblasts transformed by mutants of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA, 73, 2047–2051.CrossRefGoogle Scholar
  22. 22).
    WANG, E., GOLDBERG, A.R. (1976). Changes in microfilament organization and surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus. Proc. Natl. Acad. Sci. USA, 73, 4065–4069.CrossRefGoogle Scholar
  23. 23).
    DAVID-PFEUTY, T., SINGER, S.J. (1980). Altered distribution of cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc. Natl. Acad. Sci. USA, 77, 6687–6691.CrossRefGoogle Scholar
  24. 24).
    HANAFUSA, H. (1977). Cell transformation by RNA retroviruses. In: “Comprehensive Virology”, H. Fraenkel-Conrat, R.R. Wagner, eds., Plenum Press, New York, 10, 401–419.Google Scholar
  25. 25).
    WANG, E., YIN, H.E., KRUEGER, J.G., CALIGURI, L.A., TAMM, I. (1984). Unphosphorylated gelsolin is localized in regions of cell-substratum contact or attachment in Rous sarcoma virus transformed rat cells. J. Cell Biol., 98, 761–771.CrossRefGoogle Scholar
  26. 26).
    ERIKSON, R.L., COLLETT, M.S., ERIKSON, E., PURCHIO, A.F. (1979). Evidence that the avian sarcoma virus transformed gene product is a cyclic AMP-independent protein kinase. Proc. Natl. Acad. Sci. USA, 76, 6260–6268.CrossRefGoogle Scholar
  27. 27).
    KRUEGER, J.G., GARBER, E.A., GOLDBERG, A.R., HANAFUSA, H. (1982). Changes in amino-terminal sequences of pp6Osrc leak to decreased membrane association and decreased in vivo tumorigenicity. Cell, 28, 889–895.CrossRefGoogle Scholar
  28. 28).
    SEFTON, B.M., TROWBRIDGE, I.S., COOPER, J., SCOLNICK, J.A. (1982). The transforming protein of Rous sarcoma virus, Harvey sarcoma virus and Abelson virus contain tightly bound lipid. Cell, 31, 465–474.CrossRefGoogle Scholar
  29. 29).
    LEVINSON, D.A., COURTNEIDGE, A., BISHOP, M. (1981). Structural and functional domains of the RSV transforming protein (pp6Osrc). Proc. Natl. Acad. Sci. USA, 78, 1624–1628.CrossRefGoogle Scholar
  30. 30).
    BEUG, H., CLAVIEZ, M., JOCKUSCH, B.M., GRAFT, T. (1978). Differential expression of Rous sarcoma virus specific transformation parameters in enucleated cells. Cell, 14, 843–856.CrossRefGoogle Scholar
  31. 31).
    ROHRSCHNEIDER, L.R., ROSOK, M.J. (1983). Transformation parameters and pp6Osrc localization in cells infected with partial transformation mutants of Rous sarcoma virus. Mol. Cell. Biol. 3, 731–742.Google Scholar
  32. 32).
    RADKE, K., MARTIN, G.S. (1979). Transformation by Rous sarcoma virus: effects of src gene expression on the synthesis and phosphorylation of cellular polypeptides. Proc. Natl. Acad. Sci. USA, 76, 5212–5216.CrossRefGoogle Scholar
  33. 33).
    ERIKSON, E., ERIKSON, R.L. (1980). Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus-transforming gene product. Cell, 21, 829–836.CrossRefGoogle Scholar
  34. 34).
    COOPER, J., HUNTER, T. (1981). Changes in protein phosphorylation in Rous sarcoma virus-transformed chicken embryo cells. Mol. Cell. Biol., 1, 165–171.Google Scholar
  35. 35).
    COOPER, J., HUNTER, T. (1982). Discrete primary locations of a tyrosine protein kinase and of three proteins that contain phosphotyrosine in virally-transformed chick fibroblasts. J. Cell Biol., 94, 287–296.CrossRefGoogle Scholar
  36. 36).
    COOPER, J., HUNTER, T. (1983). Identification and characterization of cellular targets for tyrosine protein kinase. J. Biol. Chem., 258, 1108–1119.Google Scholar
  37. 37).
    GREENBERG, M., EDELMAN, G.M. (1983). The 34Kd pp60src substrate is located at the inner face of the plasma membrane. Cell, 33, 767–779.CrossRefGoogle Scholar
  38. 38).
    NIGG, E.A., COOPER, J.A., HUNTER, T. (1983). Immunofluorescent localization of a 39,000 dalton substrate of tyrosine protein kinases to the cytoplasmic surface of the plasma membrane. J. Cell Biol., 96, 1601–1608.CrossRefGoogle Scholar
  39. 39).
    RADKE, K., CARTER, C., MOSS, P., DEHAZYA, P., SCHLIWA, M., MARTIN, G.S. (1983). Membrane association of a 36,000 d substrate for tyrosine phosphorylation in chicken fibroblasts transformed by avian sarcoma virus. J.CellBio1. 97, 1601–1608.CrossRefGoogle Scholar
  40. 40).
    COURTNEIDGE, S., RALSTON, R., ALITALO, K., BISHOP, M.J. (1983). Subcellular location of an abundant substrate (p36) for tyrosine specific kinase. Mol. Cell. Biol. 3, 340–350.Google Scholar
  41. 41).
    FRACKLETON, A.R., ROSS, A., EISEN, H.N. (1983). Characterization and use of monoclonal antibodies for isolation of phosphotyrosyl proteins from retrovirus transformed cells and growth factor-stimulated cells. Mol. Cell. Biol., 3, 1343–1348.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • P. M. Comoglio
    • 1
  • D. Cirillo
    • 1
  • M. F. Di Renzo
    • 1
  • R. Ferracini
    • 1
  • F. G. Giancotti
    • 1
  • S. Giordano
    • 1
  • L. Naldini
    • 1
  • G. Tarone
    • 1
  • P. C. Marchisio
    • 1
  1. 1.Institute of HistologyUniversity of Torino Medical SchoolTorinoItaly

Personalised recommendations