The Functions of Oncogene Products

  • Tony Hunter
Part of the NATO ASI Series book series (NSSA, volume 91)


An understanding of the actions of oncogenes in the process of malignant transformation will ultimately depend on a knowledge of the functions of the protein products of these genes. To date about twenty different oncogenes of either viral or tumor origin have been identified. One or more protein products of each of these oncogenes have been described. Some progress has been made in assigning functions to oncogene products, and at least one function has been ascribed to over half these proteins. I propose to review briefly our current knowledge in this area.


Nuclear Matrix Rous Sarcoma Virus Oncogene Product Avian Sarcoma Virus Phosphotransferase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    BISHOP, J.M. (1983). Cellular oncogenes and retroviruses. Ann. Rev. Biochem., 52, 301.CrossRefGoogle Scholar
  2. 2).
    SEFTON, B.M. and HUNTER, T. (1984). Tyrosine protein kinases. Adv. Cycl. Nucl. and Protein Phosphorylation Res., 18, 195.Google Scholar
  3. 2).
    SEFTON, B.M. and HUNTER, T. (1984). Tyrosine protein kinases. Adv. Cycl. Nucl. and Protein Phosphorylation Res., 18, 195.Google Scholar
  4. 4).
    LEVINSON, A.D., COURTNEIDGE, S.A..and BISHOP, J.M. (1981). Structural and functional domains of the Rous sarcoma virus transforming protein (pp60src). Proc. Natl. Acad. Sci. USA, 78, 1624.Google Scholar
  5. 5).
    BRUGGE, J.S. and DARROW, D (1984). Analysis of the catalytic domain of phosphotransferase activity of two avian sarcoma virus transforming proteins. J. Biol. Chem., 259, 4550.Google Scholar
  6. 6).
    WEINMASTER, G., HINZE, E. and PAWSON, T. (1983). Mapping of multiple phosphorylation sites within the structural and catalytic domains of the Fujinami sarcoma virus transforming protein. J. Virol., 46, 29.Google Scholar
  7. 7).
    WANG, J.Y.J., QUEEN, C. and BALTIMORE, D. (1982). Expression of an Abelson murine leukemia virus-encoded protein in Escherichia coli causes extensive phosphorylation of tyrosine residues. J. Biol. Chem., 257, 13181.Google Scholar
  8. 8).
    COOPER, J.A. and HUNTER, T. (1983). Regulation of cell growth and transformation by tyrosine-specific protein kinases: The search for important cellular substrate proteins. Current Topics in Microbiol. and Immunol., 107, 125.CrossRefGoogle Scholar
  9. 9).
    SUGIMOTO, Y., WHITMAN, M., CANTLEY, L.C. and ERIKSON, R.L. (1984). Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc. Natl. Acad. Sci. USA, 81, 2117.CrossRefGoogle Scholar
  10. 10).
    MACARA, I.G., MARINETTI, G.V. and BALDUZZI, P.C. (1984). Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: possible role in tumori-genesis. Proc. Natl. Acad. Sci. USA, 81, 2728.CrossRefGoogle Scholar
  11. 11).
    OPPERMANN, H., LEVINSON, A.D., LEVINTOW, L., VARMUS, H.E. and BISHOP, J.M. (1979). Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src). Proc. Natl. Acad. Sci. USA, 76, 1804.CrossRefGoogle Scholar
  12. 12).
    MATHEY-PREVOT, B., HANAFUSA, H. and KAWAI, S. (1982). A cellular protein is immunologically cross-reactive with and functionally homologous to the Fujinami sarcoma virus transforming protein. Cell, 28, 897.CrossRefGoogle Scholar
  13. 13).
    PONTICELLI, A.S., WHITLOCK, C.A., ROSENBERG, N. and WITTE, O.N. (1982). In vivo tyrosine phosphorylations of the Abelson virus transforming protein are absent in its normal cellular homolog. Cell, 29, 953.CrossRefGoogle Scholar
  14. 14).
    DOWNWARD, J., YARDEN, Y., MAYES, E., SCRACE, G., TOTTY, N., STOCKWELL, P., ULLRICH, A., SCHLESSINGER, J. and WATERFIELD, M. D. (1984). Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature, 307, 521.CrossRefGoogle Scholar
  15. 15).
    ULLRICH, A., COUSSENS, L., HAYFLICK, J.S., DULL, T.J., GRAY, A., TAM, A.W., LEE, J., YARDEN, Y., LIBERMAN, T.A., SCHLESSINGER, J., DOWNWARD, J., MAYES, E.L.V., WATERFIELD, M. D., WHITTLE, M. and SEEBURG, P.H. (1984). Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature, 309, 418.CrossRefGoogle Scholar
  16. 16).
    HUNTER, T. and COOPER, J.A. (1981). Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell, 24, 741.CrossRefGoogle Scholar
  17. 17).
    COOPER, J.A., BOWEN-POPE, D., RAINES, E., ROSS, R. and HUNTER, T. (1982). Similar effects of platelet-derived growth factor and eipdermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell, 31, 263.Google Scholar
  18. 18).
    SEFTON, B.M., HUNTER, T., BALL, E.H. and SINGER, S.J. (1981). Vinculin: a cytoskeletal substrate of the transforming protein of Rous sarcoma virus. Cell, 24, 165.CrossRefGoogle Scholar
  19. 19).
    HUNTER, T. and SEFTON, B.M. (1980). The transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA, 77, 1311.CrossRefGoogle Scholar
  20. 20).
    COOPER, J.A., REISS, N.A., SCHWARTZ, R.J. and HUNTER, T. (1983). Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature, 302, 218.CrossRefGoogle Scholar
  21. 21).
    ERIKSON, E. and ERIKSON, R.L. (1980). Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus transforming gene product. Cell, 21, 829.CrossRefGoogle Scholar
  22. 22).
    RADKE, K., GILMORE, T. and MARTIN, G.S. (1980). Transformation by Rous sarcoma virus: a cellular substrate for transformation -specific protein phosphorylation contains phosphotyrosine. Cell, 21, 821CrossRefGoogle Scholar
  23. 23).
    GILMORE, T. and MARTIN, G.S. (1983). Phorbol ester and diacylglycerol induce protein phosphorylation at tyrosine. Nature, 306, 487.CrossRefGoogle Scholar
  24. 24).
    NAKAMURA, K.E., MARTINEZ, R. and WEBER, M.J. (1983). Tyrosine phosphorylation of specific proteins following mitogen stimulation of chicken embryo fibroblasts. Mol. Cell. Biol., 3, 380.Google Scholar
  25. 25).
    COOPER, J.A., SEFTON, B.M. and HUNTER, T. (1984). Diverse mito-genic agents induce the phosphorylation of two related 42,000 dalton proteins on tyrosine in quiescent chick cells. Mol. Cell. Biol., 4, 30.Google Scholar
  26. 26).
    BISHOP, J.M. and VARMUS, H.E. (1984). In: “RNA Tumor Viruses” (second edition and supplement), R. Weiss, N. Teich, H. Varmus and J. Coffin, eds., Chapter 9.Google Scholar
  27. 27).
    BARBACID, M. and LAUVER, A.V. (1981). Gene products of McDonough feline sarcoma virus have an in vitro-associated protein kinase that phosphorylates tyrosine residues: lack of detection of this enzymatic activity in vivo. J. Virol., 40, 812.Google Scholar
  28. 27).
    MOELLING, K., HEIMANN, B., BEIMLING, P., RAPP, U.R. and SANDER, T. (1984). Purified gag-miZ and gag-raf proteins phosphorylate serine and threonine in contrast to the tyrosine-specific protein kinase gag-fps. Nature, in press.Google Scholar
  29. 29).
    KLOETZER, W.S., MAXWELL, S.A. and ARLINGHAUS, R.B. (1983). p85gag-mos encoded by ts110 Moloney murine sarcoma virus has an associated protein kinase activity. Proc. Natl. Acad. Sci. USA, 80, 412.Google Scholar
  30. 30).
    SEFTON, B.M., HUNTER, T., BEEMON, K. and ECKHART, W. (1980). Phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell, 20, 807.CrossRefGoogle Scholar
  31. 31).
    RAPP, U.R., REYNOLDS, F.H. and STEPHENSON, J.R. (1983). New mammalian transforming retrovirus: demonstration of polyprotein gene product. J. Virol., 45, 914.Google Scholar
  32. 32).
    NISHIZUKA, Y. (1984). The role of protein kinase C in cell surface signal transduction and tumour production. Nature, 308, 693.CrossRefGoogle Scholar
  33. 33).
    DOOLITTLE, R.F., HUNKAPILLER, M.W., HOOD, L.E., DEVARE, S.G., ROBBINS, K.C., AARONSON, S.A. and ANTONIADES, H.N. (1983). Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science, 221, 275.CrossRefGoogle Scholar
  34. 34).
    WATERFIELD, M.D., SCRACE, G.T., WHITTLE, N., STROOBANT, P., JOHNSSON, A., WASTESON, A., WESTERMARK, B., HELDIN, C.-H., HUANG, J.S. and DEUEL, T.F. (1983). Platelet-derived growth factor is structurally related to the putative transforming protein p285i6 of simian sarcoma virus. Nature, 304, 35.CrossRefGoogle Scholar
  35. 35).
    DEUEL, T.F., HUANG, J.S., HUANG, S.S., STROOBANT, P. and WATERFIELD, M.D. (1983). Expression of a platelet-derived growth factor-like protein in simian sarcoma virus transformed cells. Science, 221, 1348.CrossRefGoogle Scholar
  36. 36).
    ROBBINS, K.C., ANTONIADES, H.N., DEVARE, S.G., HUNKAPILLER, M.W. and AARONSON, S.A. (1983). Structural and immunological similarities between simian sarcoma virus gene product(s) and human platelet-derived growth factor. Nature, 305, 605.CrossRefGoogle Scholar
  37. 37).
    LAND, H., PARADA, L.F. and WEINBERG, R.A. (1983). Cellular oncogenes and multistep carcinogenesis. Science, 222, 771.CrossRefGoogle Scholar
  38. 38).
    SHIH, T.Y., PAPAGEORGE, A.G., STOKES, P.E., WEEKS, M.O. and SCOLNICK, E.M. (1980). Guanine nucleotide-binding and autophosphorylating activities associated with the P210rc protein of Harvey murine sarcoma virus. Nature, 287, 686.CrossRefGoogle Scholar
  39. 39).
    FINKEL, T., DER, C.J. and COOPER, G.M. (1984). Activation of ras genes in human tumors does not affect guanine nucleotide binding properties of p21. Cell, 37, 151.CrossRefGoogle Scholar
  40. 40).
    McGRATH, J.P., CAPON, D.J., GOEDDEL, D.V. and LEVINSON, A.D. (1984). Comparative biochemical properties of normal and activated human ras p21 protein. Nature, 310, 644.CrossRefGoogle Scholar
  41. 41).
    GILMAN, A.G. (1984). G proteins and dual control of adenylate cyclase. Cell, 36, 577.CrossRefGoogle Scholar
  42. 42).
    KAMATA, T. and FERAMISCO, J.R. (1984). Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene products. Nature, 310, 147.CrossRefGoogle Scholar
  43. 43).
    MOELLING, K., BUNTE, T., GREISER-WILKE, I., DONNER, P. and PFAFF, E. (1984). Properties of the avian viral transforming proteins gag-myc, myc and gag-mil. Cancer Cells Vol. 2, Oncogenes and Viral Genes, p. 173, Cold Spring Harbor.Google Scholar
  44. 44).
    EISENMAN, R.N., TACHIBANA, C.Y., ABRAMS, H.D. and HANN, S.R. (1984). v-mycand c-mycencoded protein are associated with the nuclear matrix. Mol. Cell. Biol., in press.Google Scholar
  45. 45).
    KELLY, K., COCHRAN, B.H., STILES, C.D. and LEDER, P. (1983). Cell-specific regulation of the c-myc gene by lymphocyte mito-gens and platelet-derived growth factor. Cell, 35, 603.CrossRefGoogle Scholar
  46. 46).
    CAMPISI, J., GRAY, H.E., PARDEE, A.B., DEAN, M. and SONENSHEIN, G.E. (1984). Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell, 36, 241.CrossRefGoogle Scholar
  47. 47).
    RALSTON, R. and BISHOP, J.E. (1983). The protein products of the myc and myb oncogenes and adenovirus E1A are structurally related. Nature, 306, 803.CrossRefGoogle Scholar
  48. 48).
    KLEMPNAUER, K.-H., SYMONDS, G., EVAN, G.I. and BISHOP, J.M. (1984). Subcellular localization of proteins encoded by oncogenes of avian myeloblastosis virus and avian leukemia virus E26 and by the chicken c-myb gene. Cell, 37, 537.CrossRefGoogle Scholar
  49. 49).
    CURRAN, T., MILLER, A.D., ZOKAS, L. and VERMA, I.M. (1984). Viral and cellular fos proteins: a comparative analysis. Cell, 36, 259.CrossRefGoogle Scholar
  50. 50).
    GREENBERG, M.E. and ZIFF, E.B. (1984). Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene.Nature, 311, 433.Google Scholar
  51. 50).
    GREENBERG, M.E. and ZIFF, E.B. (1984). Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene.Nature, 311, 433.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Tony Hunter
    • 1
  1. 1.Molecular Biology and Virology LaboratoryThe Salk InstituteSan DiegoUSA

Personalised recommendations