Advertisement

Controls of Gene Expression in Chemical Carcinogenesis: Role of Cytochrome P450 Mediated Mono-Oxygenases

  • M. C. Lechner
Part of the NATO ASI Series book series (NSSA, volume 91)

Abstract

After the first report by Sir Percivall Pott (1) in 1775, showing that scrotal cancer among chimney sweeps was due to occupational exposure to soot, many evidences have been accumulating in support of a major role played by the environment in the incidence of human cancers.

Keywords

Endoplasmic Reticulum Membrane Carcinogenic Process Chemical Carcinogenesis Amino Acid Incorporation Active mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    POTT, P. (1775). Cancer scrotic, in Chirurgical Observations, Hawes, Clarke and Collins, London, 63.Google Scholar
  2. 2).
    World Health Organization, Prevention of Cancer, Tech. Rep. Ser. No. 276, World Health Organization, Geneva (1964).Google Scholar
  3. 3).
    HIGGINSON, J. (1969). Present trends in cancer epidemiology, Proc. Can. Cancer Res. Conf., 8, 40.Google Scholar
  4. 4).
    BOYLAND, E. (1967). The correlation of experimental carcinogenesis and cancer in man, Progr. Exp. Tumor Res., 11, 222.Google Scholar
  5. 5).
    DAUNE, M. & FUCHS, R.P.P. (1980). La cancerogenese chimique, La Recherche, 115, 1066.Google Scholar
  6. 6).
    SCHECHTMAN, L.M., HENRY, C.J. & KOURI, R.E. (1980). Exposure, uptake and distribution of chemical carcinogens, in Genetic Differences in Chemical Carcinogenesis, R.E. Kouri, ed., CRC Press, Inc.Google Scholar
  7. 7).
    FRIEDWALD, W.F. & ROUS, P. (1944). The initiation and promoting elements in tumor production, J. Exp. Med., 80, 101.CrossRefGoogle Scholar
  8. 8).
    ARMUTH, V. & BERENBLUM, I. (1972). Systemic promoting action of phorbol in lung and liver carcinogenesis in AKR mice, Cancer Res., 32, 2259.Google Scholar
  9. 9).
    ARMUTH, V. & BERENBLUM, I. (1974). Promotion of mammary carcinogenesis and leukemogenic action by phorbol in virgin female Wistar rats, Cancer Res., 34, 2704.Google Scholar
  10. 10).
    PERAINO, C., FRY, R.J.M., STAFFELDT, E. & CHRISTOPHER, J.P. (1975). Comparative enhancing effects of phenobarbital, amino-barbital, diphenylhydantoin and dichlorodiphenyltrichloroethane on 2-acetyl-aminofluorene-induced hepatic tumorigenesis in the rat, Cancer Res., 35, 2884.Google Scholar
  11. 11).
    KOURI, R.E., HENRY, C.J. & KREISHER, J.H. (1980). Stages in carcinogenesis, in Genetic Differences in Chemical Carcinogenesis, CRC Press, Inc., Boca Raton, Florida, R.E. Kouri, ed.Google Scholar
  12. 12).
    NEBERT, D.W., ROBINSON, J.R., NIWA, A., KUMAKI, K. & POLAND, A.P. (1975). Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse, J. Cell Physiol., 83, 393.CrossRefGoogle Scholar
  13. 13).
    POLAND, A.P., GLOVER, E. & KENDE, A.S. (1976). Stereospecific high affinity binding of 2,3,7,8, tetrachlorodibenzo-p-dioxin by hepatic cytosol: evidence that the binding species is the receptor for the induction of aryl-hydrocarbon hydroxylase, J. Biol. Chem., 251, 4936.Google Scholar
  14. 14).
    WILLIAMS, R.T. (1959). Detoxification mechanisms, in The Metabolism and Detoxification of Drugs, Toxic Substances and other Organic Compounds, 2nd ed. John Wiley & Sons, New York.Google Scholar
  15. 15).
    GELBOIN, H.V., HUBERMAN, E. & SACHS, L. (1969). Enzymatic hydroxylation of benzopyrene and its relationship to cyto toxicity, Proc. Natl. Acad. Sci. USA, 64, 1188.CrossRefGoogle Scholar
  16. 16).
    NEBERT, D.W. (1981). Genetic differences in susceptibility to chemically induced myelotoxicity and leukemia, Environm. Health Perspectives, 39, 11.CrossRefGoogle Scholar
  17. 17).
    MARQUARDT, H.W.J. (1980). DNA-The critical cellular target in chemical carcinogenesis?, in Chemical Carcinogens and DNA, Vol. II, Ch. VI, ed. P.L. Grover, CRC Press.Google Scholar
  18. 18).
    PITOT, H.C. & SIRICA, A.E. (1980). The stages of initiation and promotion in hepatocarcinogenesis, B.B.A., 605, 191.Google Scholar
  19. 19).
    EMMELOT, P. & SCHERER, E. (1980). The first relevant cell stage in rat liver carcinogenesis. A quantitative approach, B.B.A., 605, 247.Google Scholar
  20. 20).
    MILLER, E.C. (1978). Some current perspectives on chemical carcinogenesis in humans and experimental animals, Cancer Res., 38, 1479.Google Scholar
  21. 21).
    WEINSTEIN, I.B., JEFFREY, A.M., JENNETTE, R.W., BLOBSTEIN, S. H., HARVEY, R.G., HARRIS, C., AUTRUP, H., KASAI, H. & NAKANISHI, K. (1976). Benzo[a]pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo, Science, 193, 592.CrossRefGoogle Scholar
  22. 22).
    FUCHS, R.P.P., LEFEVRE, J.-F., POUYET, J. & DAUNE, M.P. (1976). Comparative orientation of the fluorene residue in native DNA modified by N-acetoxy-N-2 acetylaminofluorene and two 7-halogene derivatives, Biochemistry, 15, 3347.CrossRefGoogle Scholar
  23. 23).
    ESSIGMANN, J.M., CROY, R.G., NADZAN, A.M., BUSBY, W.F., REINHOLD, V.N., BUCHI, G. & WOGAN, G.N. (1977). Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro, Proc. Natl. Acad. Sci. USA, 74, 1870.CrossRefGoogle Scholar
  24. 24).
    GELBOIN, H.V., KINOSHITA, N. & WIEBEL, F.J. (1972). Microsomal hydroxylases: induction and role in polycyclin hydrocarbon carcinogenesis and toxicity, Fed. Proc., Fed. Am. Soc. Exp. Biol., 31, 1298.Google Scholar
  25. 25).
    COON, M.J. & VATSIS, K.P. (1978). Biochemical studies on chemical carcinogenesis: role of multiple forms of liver microsomal cytochrome P45O in the metabolism of benzo a pyrene and other foreign compounds, Polycyclic Hydrocarbons and Cancer,ed. Academic Press, Inc., 1, 335.Google Scholar
  26. 26).
    NEBERT, D.W. & JENSEN, N.M. (1979). The Ah Zocus: genetic regulation of the metabolism of carcinogens, drugs and other environmental chemicals by cytochrome P45O mediated mono-oxygenases, CRC Critical Reviews in Biochemistry, 401.Google Scholar
  27. 27).
    POLAND, A.P., GLOVER, E., ROBINSON, J.R. & NEBERT, D.W. (1974). Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of mono-oxygenase activities and cytochrome P1–450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically “non-responsive” to other aromatic hydrocarbons, J. Biol. Chem., 249, 5599.Google Scholar
  28. 28).
    NEBERT, D.W. (1981). Genetic differences in susceptibility to chemically induced myelotoxicity and leukemia, Environm. Health Perspect., 39, 11.CrossRefGoogle Scholar
  29. 29).
    BERENBLUM, I. (1975). Sequencial aspects of chemical carcinogenesis, Skin Cancer, F.F. Becker, ed., Plenum Press, New York, 1, 323.Google Scholar
  30. 30).
    BISHOP, J.M. (1983). Cancer genes come to age, Cell, 32, 1018.Google Scholar
  31. 31).
    Schulte-Hermann, R., SCHUPPLER, R.J., OHDE, G., BURSCH, W. & Timmermann-Trosiener, I. (1982). Phenobarbital and other liver tumor promoters, in Chemical Carcinogenesis, C. Nicolini, ed., Plenum Press, New York and London.Google Scholar
  32. 32).
    WATANABE, K. & WILLIAMS, G.M. (1978). Enhancement of rat hepatocellular-altered foci by the liver tumor promoter phenobarbital: evidence that foci are precursors of neoplasms and that the promoter acts on carcinogen-induced lesions, J. Natl. Cancer Inst., 61, 1311.Google Scholar
  33. 33).
    O’BRIAN, P.J., SIMSIMAN, R.C. & BOUTWELL, R.K. (1975). Induction of the polyamine biosynthetic enzymes in mouse epidermis by tumor promoting agents, Cancer Res., 35, 1662.Google Scholar
  34. 34).
    PUGH, T.D. & GOLDFARB, S. (1978). Quantitative histochemical and autoradiographic studies of hepatocarcinogenesis in rats fed 2-acetyl-aminofluorene followed by phenobarbital, Cancer Res., 38, 4450.Google Scholar
  35. 35).
    PITOT, H.C., BARSNESS, L., GOLDSWORTHY, T. & KITAGAWA, T. (1978). Biochemical characterisation of stages of hepatocarcinogenesis after a single dose of diethylnitrosamine, Nature, 271, 456.CrossRefGoogle Scholar
  36. 36).
    MANNERING, G.J. (1968). Significance of stimulation and inhibition of drug metabolism in pharmacological testing, Selected Pharmacological Testing Methods, ed. M. Burger Dekker, N.Y., 51.Google Scholar
  37. 37).
    ORRENIUS, S. & ERNSTER, L. (1964). Phenobarbital induced synthesis of the oxidative demethylating enzyme of rat liver microsomes, Biochim. Biophys. Res. Commun., 16, 60.CrossRefGoogle Scholar
  38. 38).
    RYAN, D.E., THOMAS, P.E., KORZENIOWSKI, D. & LEVIN, W. (1979). Separation and characterisation of highly purified forms of liver microsomal cytochrome P450 from rats treated with polychlorinated biphenyls, phenobarbital and 3-methylchlolanthrene, J. Biol. Chem., 254, 1365.Google Scholar
  39. 39).
    HAUGEN, D.A. & COON, M.J. (1976). Properties of electrophoretically homogeneous phenobarbital-inducible and ß-napthoflavone-inducible forms of liver microsomal cytochrome P450, J. Biol. Chem., 251, 7929.Google Scholar
  40. 40).
    POLAND, A. & GLOVER, E. (1975). Genetic expression of aryl-hydrocarbon hydroxylase by 2,3,7,8-tetrachlorodibenzo-p-dioxin: evidence for a receptor mutation in genetically non-responsive mice, Mol. Pharmacol., 11, 389.Google Scholar
  41. 41).
    THORGEIRSSON, S.S. & NEBERT, D.W. (1977). The Ah Zocus and the metabolism of chemical carcinogens and other foreign compounds, Adv. Cancer Res., 25, 149.CrossRefGoogle Scholar
  42. 42).
    PERAINO, C., FRY, R.J.M., STAFFELD, E. & KISIELESKI, W.E. (1973). Effects of varying the exposure to phenobarbital on its enhancement of 2-acetylaminofluorene-induced hepatic tumorigenesis in the rat, Cancer Res., 33, 2701.Google Scholar
  43. 43).
    PERAINO, C., FRY, R.J.M., STAFFELDT, E. & CHRISTOPHER, J.P. (1977). Enhancing effects of phenobartitone and butylated hydroxytoluene on 2-acetylaminofluorene-induced hepatic tumori-genesis in the rat, Food Cosmet. Toxicol., 15, 93Google Scholar
  44. 44).
    KATO, R., LOEB, L. & GELBOIN, H.V. (1965). Microsome-specific stimulation by phenobarbital of amino acid incorporation in vivo, Biochem. Pharmacol., 14, 1164.CrossRefGoogle Scholar
  45. 45).
    ARIAS, I.M., DOYLE, A. & SCHIMKE, R.T. (1969). Studies on the synthesis and degradation of protein of the endoplasmic recticulum of rat liver, J. Biol. Chem., 244, 3303.Google Scholar
  46. 46).
    GLAZER, R.I. & SARTORELLI, A.C. (1972). The effect of phenobarbital on the synthesis of nascent protein on free and membrane-bound polyribosomes of normal and regenerating liver, Molec. Pharmacol., 8, 701.Google Scholar
  47. 47).
    MCCAULEY, R. & COURI, D. (1971). Early effects of phenobarbital on cytoplasmic RNA in rat liver, Biochim. Biophys. Acta, 238.Google Scholar
  48. 48).
    FREIRE, M.T. & LECHNER, M.C. (1985). Manuscript in preparation.Google Scholar
  49. 49).
    LECHNER, M.C., SINOGAS, C.M., FREIRE, M.T. & BRAZ, J. (1982). Expression of liver mono-oxygenase functions induced by xenobiotics, in Somatic Cell Genetics, C.T. Caskey, ed., Plenum Publishing Corporation, 69.Google Scholar
  50. 50).
    STEELE, W.J. (1970). Phenobarbital induced prolongation of the half-life of ribosomal-RNA of rat liver, Fed. Proc. Fed. Am. Societies Exp. Biol., 29, 737.Google Scholar
  51. 51).
    LECHNER, M.C. & POUSADA, C.R. (1971). A possible role of liver microsomal alkaline ribonuclease in the stimulation of oxidative drug metabolism by phenobarbital, chlordane and chlorophenothane (DDT), Biochem. Pharmacol., 20, 3021.CrossRefGoogle Scholar
  52. 52).
    LECHNER, M.C. (1976). Effect of phenobarbital treatment on poly(A)–rich RNA in rat liver microsomes, I.U.B. Xth Internat. Congress Biochem. Hamburg, 03–6–130.Google Scholar
  53. 53).
    LECHNER, M.C. (1974). Studies of RNA from rat liver endoplasmic reticulum sub-fractions. Effect of phenobarbital treatment, Naunyn-Schmiedeberg’s Arch. Pharm., Supp. 285, R50.Google Scholar
  54. 54).
    LECHNER, M.C. & SINOGAS, C.M. (1980). Changes in gene expression during liver microsomal enzyme induction by phenobarbital Biochem. Biophys. and Regulation of Cytochrome P450, Gustafsson et aZ., ed., Elsevier/North-Holland, 405.Google Scholar
  55. 55).
    LINDRELL, T.J., ELLINGER, R., WARREN, J.T., SUNDHEIMER, D. & MALLEY, A.F. (1977). The effect of acute and chronic phenobarbital treatment of the activity of rat liver DNA dependent RNA polymerases, Molec. Pharm., 13, 426.Google Scholar
  56. 56).
    KUMAR, A., SATYANARAYANA RAO, R. & PADMANABAN, G. (1980). A comparative study on the early effects of phenobarbital and 3 methylcholanthrene on the synthesis and transport of ribonucleic acid in rat liver, Biochem. J., 186, 81.Google Scholar
  57. 57).
    LECHNER, M.C. & SINOGAS, C.M. (1978). Studies on liver poly(A) rich RNA during microsomal enzyme induction, 12th FEBS Meeting, Dresden, RDA, 1157, 124.Google Scholar
  58. 58).
    SCHERRER, K., Imaizumi-Scherrer, M.T., REYNAUD, C.A. & THERWATH, A. (1979). On pre-messenger RNA and transcription. A review, Mol. Biol. Rep., 5, 5.CrossRefGoogle Scholar
  59. 59).
    MAUNDRELL, K., MAXWELL, E.S., CIVELLI, O., VINCENT, A., GOLDENBERG, S., BURI, J.F., Imaizumi-Scherrer, M.T. & SHERRER, K. (1979). Messenger RNP complexes in avian erithroblasts: carriers of post-transcriptional regulation?, Mol. Biol. Rep., 5, 43.CrossRefGoogle Scholar
  60. 60).
    HEMMINKI, K. (1975). Labelling kinetics of RNA containing poly(A) in liver sub-cellular fractions, Molec. and Cell Biochem., 8, 123.CrossRefGoogle Scholar
  61. 61).
    ZÄHRINGER, J., BALIGA, B.S. & MUNRO, H.N. (1976). Novel mechanism for translation control in regulation of ferritin synthesis by iron, Proc. Natl. Acad. Sci., 73, 857.CrossRefGoogle Scholar
  62. 62).
    YAP, S.H., STRAIR, R.K. & SHAFRITZ, D.A. (1978). Effect of a short term fast on the distribution of cytoplasmic albumin messenger ribonucleic acid in rat liver, J. Biol. Chem., 253, 4944.Google Scholar
  63. 63).
    BHAT, K.S. & PADMANABAN, G. (1978). Cytochrome P450 synthesis in vivo and in a cell-free system from rat liver, FEBS Lett., 89, 337.CrossRefGoogle Scholar
  64. 64).
    DUBOIS, R.N. & WATERMAN, M.R. (1979). Effect of phenobarbital administration to rats on the level of the in vitro synthesis of cytochrome P450 directed by total rat liver RNA, Biochem. Biophys. Res. Commun., 90, 150.CrossRefGoogle Scholar
  65. 65).
    LECHNER, M.C., FREIRE, M.T. & GRONER, B. (1979). In vitro biosynthesis of liver cytochrome P450 mature peptide sub-unit by translation of isolated poly(A)+ mRNA from normal and phenobarbital induced rats, Biochem. Biophys. Res. Commun., 90 531.CrossRefGoogle Scholar
  66. 66).
    NOKIN, P., HUEZ, G., MARBAIX, G., BURNY, A. & CHANTRENNE, H. (1976). Molecular modifications associated with aging of globin messenger RNA in vivo, Eur. J. Biochem., 62, 509.CrossRefGoogle Scholar
  67. 67).
    SHIRES, T.K. & PITOT, H.C. (1974). The membron: a functional hypothesis for the translational regulation of genetic expression, Biomembranes, L.A. Manson, ed., Plenum Press, New York, 5, 81.Google Scholar
  68. 68).
    RICHTER, J.D. & SMITH, L.D. (1981). Differential capacity for translation and lack of competition between mRNA’s that segregate to free and membrane-bound polysomes, Cell, 27, 183.CrossRefGoogle Scholar
  69. 69).
    AMAR-COSTESEC, A., TODD, J.A., SABATINI, D.D. & KREIBICH, G. Characterization of the translocation apparatus of the endoplasmic reticulum. I-Functional tests of rat liver microsomal subfractions, personal communication.Google Scholar
  70. 70).
    CARDELI, J., LONG, B. & PITOT, H.C. (1976). Direct association of messenger RNA labelled in the presence of fluoro-orotate with membranes of the endoplasmic reticulum in rat liver, J. Cell Biol., 70, 47.CrossRefGoogle Scholar
  71. 71).
    LANE, M.A., ADESNIK, M., SUMIDA, M., TASHIRO, Y. & SABATINI, D.D. (1975). Direct association of messenger RNA with microsomal membranes in human diploid fibroblasts, J. Cell Biol., 65, 513.CrossRefGoogle Scholar
  72. 72).
    Bar-Nun, S., KREIBICH, G., ADESNIK, M., ALTERMAN, L., NEGISHI, M. & SABITINI, D.D. (1980). Synthesis and insertion of cytochrome P450 into endoplasmic reticulum membranes, Proc. Natl. Acad. Sci., 77, 965.CrossRefGoogle Scholar
  73. 73).
    SINOGAS, C.M.& LECHNER, M.C., manuscript in preparation.Google Scholar
  74. 74).
    LECHNER, M.C. & SINOGAS, C.M. (1981). The importance of RNP’s/ membrane interactions for stimulation of protein synthesis by phenobarbital, Biochem. Soc. Transact., 9, 156 P.Google Scholar
  75. 75).
    FREIRE, M.T. & LECHNER, M.C., manuscript in preparation.Google Scholar
  76. 76).
    GONZALEZ, F.J. & KASPER, C.B. (1982). Cloning of DNA complementary to rat liver NADPH-cytochrome c (P450) oxidoreductase and cytochrome P450b mRNA’s, J. Biol. Chem., 257, 5962.Google Scholar
  77. 77).
    HARDWICK, J.P., GONZALEZ, F.J. & KASPER, C.B. (1983). Transcriptional regulation of rat liver epoxide hydrase, NADPH-cytochrome P450 oxidoreductase and cytochrome P450b genes by phenobarbital, J. Biol. Chem., 258, 8081.Google Scholar
  78. 78).
    LECHNER, M.C., SINOGAS, C.M., Osório-Almeida, M.L., CHAUMETRIFFAUT, PH. & SALA-TREPAT, J.M. Phenobarbital mediated modulation of gene expression in rat liver: analysis of rat liver cDNA clones, manuscript in prepration.Google Scholar
  79. ) INSERM Conference, Molecular biology and pathology of hepatic differentiation, Seillac, France, 21–26 October 1984.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. C. Lechner
    • 1
  1. 1.Laboratório de BioquimicaInstituto Gulbenkian de CiênciaOeirasPortugal

Personalised recommendations