Transcription Control in Eucaryotes-Enhancers and Promoters

  • Brigitte Bourachot
  • Philippe Herbomel
  • Moshe Yaniv
Part of the NATO ASI Series book series (NSSA, volume 91)


The pioneering work of bacterial and phage geneticists have demonstrated that gene expression is regulated in response to changes in external conditions. The operon theory of Jacob & Monod (1) laid the basis for the identification of the transcription control sequences in procaryotes and of the proteins that interact with them. The conjunction of several approaches: genetic analysis, DNA cloning and sequencing, the isolation and characterization of control proteins and the development of powerful in vitro systems brought much insight to our present day understanding of the control of gene expression in procaryotes (see e.g. a recent review, (2,3)).


Transcription Unit Enhancer Element Chloramphenicol Acetyl Transferase Polyoma Virus Transcription Control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    JACOB, F. & MONOD, J. (1961). Genetic regulatory mechanism in the synthesis of proteins. J. Mol. Biol., 3, 265.CrossRefGoogle Scholar
  2. 2).
    DE CROMBRUGGHE, B., BUSBY, S., & BUC, H. (1984). Role of the cyclic AMP receptor protein in activation of transcription. Science, 224, 831.CrossRefGoogle Scholar
  3. 3).
    RAIBAUD, O. & SCHWARTZ, M. (1984). Positive control of transscription initiation in bacteria. Annual Review of Genetics, 18, 173.CrossRefGoogle Scholar
  4. 4).
    BREATHNACH, R. & CHAMBON, P. (1981). Organization and expression of eucaryotic split genes coding for proteins. Ann. Rev. Biochem., 50, 349.CrossRefGoogle Scholar
  5. 5).
    MCKNIGHT, S.L. & KINGSBURY, R. (1982). Transcription control signals of a eukaryotic protein-coding gene. Science, 217, 316.CrossRefGoogle Scholar
  6. 6).
    DIERKS, P., VAN DOYEN, A., COCHRAN, M.D., DOBKIN, C., REISER, J., & WEISSMANN, C. (1983). Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit -globin gene in mouse 3T6 cells. Cell, 32, 695.CrossRefGoogle Scholar
  7. 7).
    BENOIST, C. & CHAMBON, P. (1981). In vivo sequence requirements of the SV40 early promoter region. Nature, 290, 304.CrossRefGoogle Scholar
  8. 8).
    GRUSS, P., DHAR, R., & KHOURY, G. (1981). Simian virus 40 tandem repeated sequences as an element of the early promoter. Proc. Natl. Acad. Sci. USA, 78, 943.CrossRefGoogle Scholar
  9. 9).
    TYNDAL, C., LA MANTIA, G., THACKER, C.M., FAVALORO, J., & KAMEN, R. (1981). A region of the polyoma virus genome between the replication origin and late protein coding sequences is required in cis for both early gene expression and viral DNA replication. Nucl. Acids. Res., 9, 6231.CrossRefGoogle Scholar
  10. 10).
    BENDIG, M.M., THOMAS, T., & FOLK, W.R. (1980). Regulatory mutants of polyoma virus defective in DNA replication and the synthesis of early proteins. Cell, 20, 410.CrossRefGoogle Scholar
  11. 11).
    KATINKA, M. & YANIV, M. (1982). Deletions of N-terminal sequences of polyoma virus T-antigens reduce but do not abolish transformation of rat fibroblasts. Mol. Cell. Biol., 2, 1238.Google Scholar
  12. 12).
    FROMM, M. & BERG, P. (1983). SV40 early and late region promoter function are enhanced by the 72 base pair repeat inserted at distant locations and inverted orientations. Mol. Cell. Biol., 3, 991.Google Scholar
  13. 13).
    BANERJI, J., RUSCONI, S., & SCHAFFNER, W. (1981). Expression of a 8-globin gene is enhanced by remote SV40 DNA sequences. Cell, 27, 299.CrossRefGoogle Scholar
  14. 14).
    DE VILLERS, J. & SCHAFFNER, W. (1981). A small segment of polyoma-virus DNA enhances the expression of a cloned rabbit ß-globin gene over a distance of at least 1400 base pairs. Nucl. Acids. Research, 47, 6251.CrossRefGoogle Scholar
  15. 15).
    HERBOMEL, P., BOURACHOT, B., & YANIV, M. (1984). Two distinct enhancers with different cell specificities coexist in the regulatory region of polyoma. Cell, 39, 653.CrossRefGoogle Scholar
  16. 16).
    HEARING, P. & SHENK, T. (1983). The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element. Cell, 33, 695.CrossRefGoogle Scholar
  17. 17).
    HEN, R., BORRELLI, E., SASSONE-CORSI, P., & CHAMBON, P. (1983). An enhancer element is located 340 base pairs upstream from the adenovirus-2 E1A cap site. Nucl. Acids. Res., 11, 8747.CrossRefGoogle Scholar
  18. 18).
    LANG, J.C., SPANDIDOS, D.A., & WILKIE, N.M. (1984). Transscriptional regulation of a herpes simplex virus immediate early gene is mediated through an enhancer-type sequence. EMBO J., 3, 389.Google Scholar
  19. 19).
    LUSKY, M., BERG, L., WEINER, H., & BOTCHAN, M. (1983). Bovine papillomavirus contains an activator of gene expression at the distal end of the early transcription unit. Mol. Cell. Biol., 3, 1108.Google Scholar
  20. 20).
    LEVINSON, B., KHOURY, G., VAN DE WOUDE, G., & GRUSS, P. (1982). Activation of SV40 genome by 72-base pair tandem repeats of Moloney sarcoma virus. Nature, 295, 568.CrossRefGoogle Scholar
  21. 21).
    KATINKA, M., VASSEUR, M., MONTREAU, N., YANIV, M., & BLANGY, D. (1981). Polyoma DNA sequences involved in control of viral gene expression in murine embryonal carcinoma cells. Nature, 290, 720.CrossRefGoogle Scholar
  22. 22).
    SARAGOSTI, S., MOYNE, G., & YANIV, M. (1980). Absence of nucleosomes in a fraction of SV40 chromatin between the origin of replication and the region coding for the late leader RNA. Cell, 20, 65.CrossRefGoogle Scholar
  23. 23).
    HERBOMEL, P., SARAGOSTI, S., BLANGY, D., & YANIV, M. (1981). Fine structure of origin-proximal DNAase I-hypersensitive region in wild type and EC mutant polyoma. Cell, 25, 651.CrossRefGoogle Scholar
  24. 24).
    GORMAN, C.M., MOFFATT, L.F., & HOWARD, B.H. (1982). Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol., 2, 1044.Google Scholar
  25. 25).
    HALL, C., JACOB, E., RINGOLD, G., & LEE, F. (1983). Expression and regulation of Escherichia Coli lac Z gene fusions in mammalian cells. J. Mol. App. Genet., 2, 101.Google Scholar
  26. 26).
    BANERJI, J., OLSON, L., & SCHAFFNER, W. (1983). A lymphocyte specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell, 33, 729.CrossRefGoogle Scholar
  27. 27).
    GILLIES, S.D., MORRISON, S.L., OI, V.T., & TONEGAWA,.S. (1983). A tissue specific transcription enhancer element is located in the major intron of a rearranged heavy chain gene. Cell, 33, 717.CrossRefGoogle Scholar
  28. 28).
    NEUBERGER, M.S. (1983). Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells. EMBO J., 2, 1373.Google Scholar
  29. 29).
    WEIHER, H., KONIG, M., & GRUSS, P. (1983). Multiple point mutations affecting the simian virus 40 enhancer. Science, 219, 626.CrossRefGoogle Scholar
  30. 30).
    MULLER, M.J., MUELLER, C.R., MES, A., & HASSELL, J.A. (1983). Polyomavirus origin for DNA replication comprises multiple genetic elements. J. Virol., 47, 586.Google Scholar
  31. 31).
    DE VILLIERS, J., SCHAFFNER, W., TYNDALL, C., LUPTON, S., & KAMEN, R. (1984). Polyoma virus DNA replication requires an enhancer. Nature, 312, 242.CrossRefGoogle Scholar
  32. 32).
    PAYNE, G.S., BISHOP, M.J., & VARMUS, H.E. (1982). Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature, 295, 209.CrossRefGoogle Scholar
  33. 33).
    SCOTT, W.A. & WIGMORE, D.J. (1978). Sites in SV40 chromatin which are preferentially cleaved by endonucleases. Cell, 15, 1511.CrossRefGoogle Scholar
  34. 34).
    VARSHAVSKY, A.J., SUNDIN, O.H., & BOHN, M.J. (1979). A stretch of “late” SV40 viral DNA about 400 b.p. long which included the origin of replication is specifically exposed in SV40 minichromosomes. Cell, 16, 453.CrossRefGoogle Scholar
  35. 35).
    WALDECK, W., FOHRING, B., CHOWDHURY, K., GRUSS, P., & SAUER, G. (1978). Origin of DNA replication in papovavirus chromatin is recognized by endogenous nuclease. Proc. Natl. Acad. Sci. USA, 77, 1068.Google Scholar
  36. 36).
    JAKOBOVITS, E.B., BRATOSIN, S., & ALONI, Y. (1980). A nucleosome free region in SV40 minichromosomes. Nature, 285, 263.CrossRefGoogle Scholar
  37. 37).
    CEREGHINI, S. & YANIV, M. (1984). Assembly of transfected DNA into chromatin: structural changes in the origin-promoterenhancer region upon replication. EMBO J., 3, 1243.Google Scholar
  38. 28).
    JONGSTRA, J., REUDELHUBER, T.L., OUDET, P., BENOIST, C., CHAE, C.B., JELTSCH, J.M., MATHIS, D.J., & CHAMBON, P. (1984). Induction of altered chromatin structures by SV40 enhancer and promoter elements. Nature, 307, 708.CrossRefGoogle Scholar
  39. 39).
    MILLS, F., FISHER, M., KURDA, R., FORD, A., & GOULD, H. (1984). DNase I hypersensitive sites in the chromatin of human p immunoglobulin heavy chain genes. Nature, 306, 809.CrossRefGoogle Scholar
  40. 40).
    WASYLYK, B., WASYLYK, C., AUGEREAU, P., & CHAMBON, P. (1983). The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell, 32, 503.CrossRefGoogle Scholar
  41. 41).
    DE VILLIERS, J., OLSON, L., BANERJI, J., & SCHAFFNER, W. (1983). Analysis of the transcriptional enhancer effect. In: Cold Spring Harbor Symposia on Quantitative Biology, Volume XLVII, p. 911, C.S.H.L.Google Scholar
  42. 42).
    SASSONE-CORSI, P., DOUGHERTY, J.P., WASYLYK, B., & CHAMBON, P. (1984). Stimulation in vitro transcription from heterologous promoters by the SV40 enhancer. Proc. Natl. Acad. Sci. USA, 81, 308.CrossRefGoogle Scholar
  43. 43).
    BROWN, D.D. (1984). The role of stable complexes that repress and activate eucaryotic genes. Cell, 37, 359.CrossRefGoogle Scholar
  44. 44).
    KLEIN, S., SABLITZKY, F., & RADBRUCH, A. (1984). Deletion of the IgH enhancer does not reduce immunoglobulin heavy chain production of a hybridoma IgD class switch variant. EMBO J., 3, 2473.Google Scholar
  45. 45).
    OTT, M.O., SPERLING, L., HERBOMEL, P., YANIV, M., & WEISS, M.C. (1984). Tissue specific expression is conferred by a sequence from the 5’ end of the rat albumin gene. EMBO J., 3, 2505.Google Scholar
  46. 46).
    MELLOUL, D., ALONI, B., CALVO, J., YATTE, D., & NUDEL, U. (1984). Developmentally regulated expression of chimeric genes containing muscle actin DNA sequences in transfected myogenic cells. EMBO J., 3, 983.Google Scholar
  47. 47).
    WALKER, M.D., EDLUND, T., BOULET, A.M., & RUTTER, W.J. (1983). Cell specific expression controlled by the 5’ flanking region of insulin and chymotrypsin genes. Nature, 306, 557.CrossRefGoogle Scholar
  48. 48).
    KONDOH, H., YASUDA, K., & OKADA, T.S. (1983). Tissue specific expression of a cloned chick ô-crystallin gene in mouse cells. Nature, 301, 440.CrossRefGoogle Scholar
  49. 49).
    MCKNIGHT, S.L., KINGSBURY, R.C., SPENCE, A., & SMITH, M. (1984). The distal transcription signals of the herpesvirus tk gene share a common hexanucleotide control sequence. Cell, 37, 253.CrossRefGoogle Scholar
  50. 50).
    WU, C. (1984). Two protein-binding sites in chromatin implicated in the activation of heat-shock genes. Nature, 309, 229.CrossRefGoogle Scholar
  51. 51).
    HOFER, E., HOFER-WARBINEK, R., & DARNELL, J.E. (1982). Globin RNA transcription: A possible termination site and demonstration of transcriptional control correlated with altered chromatin structure. Cell, 29, 887.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Brigitte Bourachot
    • 1
  • Philippe Herbomel
    • 1
  • Moshe Yaniv
    • 1
  1. 1.Department of Molecular BiologyPasteur InstituteParisFrance

Personalised recommendations