Regulation of Gene Expression in Developmental and Oncogenic Processes: The Albumin Alpha-Fetoprotein Locus in Mammals

  • José M. Sala-Trepat
  • Anne Poliard
  • Isabelle Tratner
  • Maryse Poiret
  • Mariela Gomez-Garcia
  • Andras Gal
  • Jean-Louis Nahon
  • Monique Frain
Part of the NATO ASI Series book series (NSSA, volume 91)


The molecular mechanisms underlying malignant cell transformation are hardly understood. An attractive hypothesis is that the acquisition of the malignant phenotype might be brought about by the activation of genes (e.g. oncogenes) whose expression is normally restricted to actively proliferating embryonic cells. Insight into the mechanisms controlling gene expression during developmental and oncogenic processes appears then essential to our understanding of neoplastic transformation.


Adult Kidney Fetal Hepatocyte Albumin Gene Adult Hepatocyte Morris Hepatoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    ABELEV, G.I. (1971). Alphα-fetoprotein in ontegenesis and its association with malignant tumors. Adv. Cancer Res. 14, 295–358.CrossRefGoogle Scholar
  2. 2).
    SELL, S., BECKER, F., LEFFERT, H. and WATABE, H. (1976). Expression of an oncodevelopmental gene product (α-fetoprotein) during fetal development and adult oncogenesis. Cancer Res. 36, 4239–4249.Google Scholar
  3. 3).
    GITLIN, D. and BOESMAN, M. (1967). Sites of serum α-feto- protein synthesis in the human and in the rat. J. Clin. Invest. 46, 1010–1016.CrossRefGoogle Scholar
  4. 4).
    RUOSLAHTI, E. and SEPPALA, M. (1979). α-Fetoprotein in cancer and fetal development. Adv. Cancer Res. 29, 275–346.CrossRefGoogle Scholar
  5. 5).
    VAN FURTH, R. and ADINOLFI, M. (1969). In vitro synthesis of the fetal αl-globulin in man. Nature 222, 1296–1299.CrossRefGoogle Scholar
  6. 6).
    GITLIN, D. and GITLIN, J.D. (1975). Fetal and neonatal development of human plasma proteins. In “The Plasma Proteins” (F.W. Putnam, ed.). Vol. 2, pp. 263. 319. Academic Press, New York.Google Scholar
  7. 7).
    SELLEM, C., FRAIN, M., ERDOS, T. and SALA-TREPAT, J.M. (1984). Differential expression of albumin and α-fetoprotein genes in fetal tissues of mouse and rat. Dev. Biol. 102, 51–60.CrossRefGoogle Scholar
  8. 8).
    SELL, S., NICHOLS, M., BECKER, F.F. and LEFFERT, H.L. (1974). Hepatocyte proliferation and αl-fetoprotein in pregnant, neonatal and partially hepatectomized rats. Cancer Research 34, 865–871.Google Scholar
  9. 9).
    WATABE, H. (1971). Early appearance of embryonic a-globulin in rat serum during carcinogenesis with 4-dimethylamino azobenzene. Cancer Res. 31, 1192–1194.Google Scholar
  10. 10).
    SELL, S., SALA-TREPAT, J.M., SARGENT, T., THOMAS, K., NAHON, J.L., GOODMAN, T.A. and BONNER, J. (1980). Molecular mechanisms of control of albumin and alpha-foetoprotein production: a system to study the early effects of chemical hepatocarcinogens. Cell Biol. Intern. Rep. 4, 235–254.CrossRefGoogle Scholar
  11. 11).
    SCHREIBER, G., ROTERMUND, H.M., MAENO, H., WEIGAND, K. and LESHS, R. (1969). The proportion of the incorporation of leucine into albumin to that into total protein in rat liver and hepatoma Morris 5123TC. Eur. J. Biochem. 10, 355–361.CrossRefGoogle Scholar
  12. 12).
    TSE, T.P.H., MORRIS, H.P. and TAYLOR, J.M. (1978). Molecular basis of reduced albumin synthesis in Morris hepatoma 7777. Biochemistry 17, 2121–2128.CrossRefGoogle Scholar
  13. 13).
    SELL, S., THOMAS, K., MICHAELSON, M., SALA-TREPAT, J.M. and BONNER, J. (1979). Control of albumin and β-fetoprotein expression in rat liver and in some transplantable hepatocellular carcinomas. Biochim. Biophys. Acta 564, 173–178.Google Scholar
  14. 14).
    SALA-TREPAT, J.M., DEVER, J., SARGENT, T.D., THOMAS, K., SELL, S. and BONNER, J. (1979). Changes in expression of albumin and α-fetoprotein genes during rat liver development and neoplasia. Biochemistry 18, 2167–2178.CrossRefGoogle Scholar
  15. 15).
    INNIS, M.A. and MILLER, D. (1977). Quantitation of rat α-fetoprotein messenger RNA with a complementary DNA probe. J. Biol. Chem. 252, 8469–8475.Google Scholar
  16. 16).
    MIURA, K., LAW, S.W., NISHI, S. and TAMAOKI, T. (1979). Isolation of α-fetoprotein messenger RNA from mouse yolk sac. J. Biol. Chem. 254, 5515–5521.Google Scholar
  17. 17).
    BROWN, P.D. and PAPACONSTANTINOU, J. (1979). Mouse albumin mRNA in liver and a hepatoma cell line. J. Biol. Chem. 254, 5177–5183.Google Scholar
  18. 18).
    SALA-TREPAT, J.M., SARGENT, T.D., SELL, S. and BONNER, J. (1979). α-Fetoprotein and albumin genes of rats: no evidence for amplification-deletion or rearrangement in rat liver carcinogenesis. Proc. Natl. Acad. Sci. USA 76, 695–699.CrossRefGoogle Scholar
  19. 19).
    SARGENT, T.D., WU, J.R., SALA-TREPAT, J.M., WALLACE, R.B., REYES, A.A. and BONNER, J. (1979). The rat serum albumin gene: Analysis of cloned sequences. Proc. Natl. Acad. Sci. USA 18, 3256–3260.CrossRefGoogle Scholar
  20. 20).
    JAGODZINSKI, L., SARGENT, T.D., YANG, M., GLACKIN, C. and BONNER, J. (1981). Sequence homology between RNAs encoding rat α-fetoprotein and rat serum albumin. Proc. Natl. Acad. Sci. USA 78, 3521–3525.CrossRefGoogle Scholar
  21. 21).
    KIOUSSIS, D., EIFERMAN, F., RIJN, P.E., GORIN, M.B., INGRAM, R.J. and TILGHMAN, S.M. (1981). The evolution of α-fetoprotein and albumin. II. The structures of the α-fetoprotein and albumin genes in the mouse. J. Biol. Chem. 256, 1960–1967.Google Scholar
  22. 22).
    LAW, S., TAMAOKI, T., KREUZALER, M. and DUGAICZYK, A. (1980). Molecular cloning of DNA complementary to a mouse afetoprotein mRNA sequence. Gene 10, 53–61.CrossRefGoogle Scholar
  23. 23).
    GAL, A., NAHON, J.L., LUCOTTE, G. and SALA-TREPAT, J.M. (1984). Structural variants of the α-fetoprotein gene in different inbred strains of rat. Mol. Gen. Genet. 195, 153–158.CrossRefGoogle Scholar
  24. 24).
    SARGENT, T., JAGODZINSKI, L., YANG, M. and BONNER, J. (1981). Fine structure and evolution of the rat serum albumin gene. Mol. Cell. Biol. 1, 871–883.Google Scholar
  25. 25).
    EIFERMAN, F., YOUNG, P.R., SCOTT, R.W. and TILGHMAN, S.M. (1981). Intragenic amplification in the mouse α-fetoprotein. Nature 294, 713–718.CrossRefGoogle Scholar
  26. 26).
    BROWN (1976) Structural origins of mammalian albumins. Fed. Proc. Am. Soc. Exp. Biol. 35, 2141–2144.Google Scholar
  27. 27).
    ALEXANDER, F., YOUNG, P.R. and TILGHMAN, S.H. (1984). Evolution of the albumin-α-fetoprotein ancestral gene from the amplification of a 27 nucleotide sequence. J. Mol. Biol. 173, 159–176.CrossRefGoogle Scholar
  28. 28).
    INGRAM, R.S., SCOTT, R.W. and TILGHMAN, S.M. (1981). α-Fetoprotein and albumin genes are in tandem in the mouse genome. Proc. Natl. Acad. Sci. USA 78, 4694–4698.CrossRefGoogle Scholar
  29. 29).
    SZPIRER, J., LEVAN, G., THORN, M. and SZPIRER, C. (1984). Gene mapping in the rat by mouse-rat somatic cell hybridization: Sinteny of the albumin and α-fetoprotein genes and assignment to chromosome 14. Cytogenet. Cell Genet. 38, 142–149.CrossRefGoogle Scholar
  30. 30).
    DUGAICZYK, A., LAW, S.W. and DENNISON, D.E. (1982). Nucleotide sequence and the encoded amino-acids of human serum albumin mRNA. Proc. Natl. Acad. Sci. USA 79, 71–75.CrossRefGoogle Scholar
  31. 31).
    MORINAGA, T., SAKAI, M., WEGMANN, T.G. and TAMAOKI, T. (1983). Primary structures of human α-fetoprotein and its mRNA. Proc. Natl. Acad. Sci. USA 80, 4604–4608.CrossRefGoogle Scholar
  32. 32).
    FRAIN, M. (1984). Structure et expression des gênes codant pour deux protéines marqueurs de la différenciation hépatique chez l’homme: L’albumine et l’alpha-foetoprotéine. Thèse d’Etat, University of Paris.Google Scholar
  33. 33).
    HARPER, M.E. and DUGAICZYK, A. (1983) Linkage of the evolutionary related serum albumin and α-fetoprotein genes within q11–22 of human chromosome 4. Am. J. Hum. Genet. 35, 565–572.Google Scholar
  34. 34).
    LIAO, W.S.L., CONN, A.R. and TAYLOR, J.M. (1980). Changes in rat al-fetoprotein and albumin mRNA levels during fetal and neonatal development. J. Biol. Chem. 255, 10036–10039.Google Scholar
  35. 35).
    CASSIO, D., WEISS, M.C., OTT, M.O., SALA-TREPAT, J.M., FRIES, J. and ERDOS, T. (1981). Expression of the albumin gene in rat hepatoma cells and their dedifferentiated variants. Cell 27, 351–358.CrossRefGoogle Scholar
  36. 36).
    BELANGER, L., FRAIN, M., BARIL, P., GINGRAS, M.C., BARTKOWIAK, J. and SALA-TREPAT, J.M. (1981). Glucocorticoid suppression of αl-fetoprotein synthesis in developing rat liver. Evidence for selective gene repression at the transcriptional level. Biochemistry 20, 6665–6671.CrossRefGoogle Scholar
  37. 37).
    NAHON, J.L., GAL, A., FRAIN, M., SELL, S. and SALA- TREPAT, J.M. (1982). No evidence for post-transcriptional control of albumin and α-fetoprotein gene expression in developing rat liver and neoplasia. Nucl. Acids Res. 10, 1895–1911.CrossRefGoogle Scholar
  38. 38).
    TILGHMAN, S.H. and BELAYEW, A. (1982). Transcriptional control of the murine albumin/α-fetoprotein locus during development. Proc. Natl. Acad. Sci. USA 79, 5254–5257.CrossRefGoogle Scholar
  39. 39).
    GUERTIN, M., BARIL, P., BARTKOWIAK, J., ANDERSON, A. and BELANGER, L. (1983). Rapid suppression of al-fetoprotein gene transcription by dexamethasone in developing rat liver. Biochemistry 22, 4296–4302.CrossRefGoogle Scholar
  40. 40).
    DARNELL, J.E. (1982). Variety in the level of gene control in eukaryotic cells. Nature 297, 365–371.CrossRefGoogle Scholar
  41. 41).
    WEISBROD, S. (1982). Active chromatin. Nature 297, 289–295.CrossRefGoogle Scholar
  42. 42).
    TONEGAWA, S., SAKANO, H., MAKI, R., TRAUNECKER, A., HEINRICH, G., ROEDER, W. and KUROSAWA, Y. (1981). Somatic reorganisation in immunoglobin genes during lymphocyte differentiation. Cold Spring Harbor Symp. Quant. Biol. 45, 839–848.CrossRefGoogle Scholar
  43. 43).
    KLEIN, G. (1983). Specific chromosomal translocations in the genesis of B-cell-derived tumors in mice and men. Cell 32, 311–315.CrossRefGoogle Scholar
  44. 44).
    LUCOTTE, G., GAL, A., NAHON, J.L. and SALA-TREPAT, J.M. (1982). EcoRI restriction site polymorphism of the albumin gene in different inbred strains of rat. Biochem. Genetics., 20 1105–1115.CrossRefGoogle Scholar
  45. 45).
    GAL, A., NAHON, J.L., LUCOTTE, G., ERDOS, T. and SALA-TREPAT, J.M. (1984). Structural basis for restriction site polymorphism at the albumin locus in inbred strains of rats. Biochem. Genetics, in press.Google Scholar
  46. 46).
    COOK, P.R. and BRAZELL, I.A. (1975). Supercoils in human DNA. J. Cell Sci. 19, 261–279.Google Scholar
  47. 47).
    BENYAHATI, C. and WORCEL, A. (1976). Isolation, characterization and structure of the folded interphase genome of Drosophila melanogaster, Cell 9, 393–407.CrossRefGoogle Scholar
  48. 48).
    BEREZNEY, R. and COFFEY, D.J. (1974). Identification of a nuclear protein matrix. Biochem. Biophys. Res. Commun. 60, 1410–1417.CrossRefGoogle Scholar
  49. 49).
    ROBINSON, S.I., NELKIN, B.D. and VOGELSTEIN, B. (1982). The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells. Cell 28, 99–106.CrossRefGoogle Scholar
  50. 50).
    CIEJEK, E.M., NORDSTROM, J.L., TSAI, M.J. and O’MALLEY, B.W. (1982) Ribonucleic acid precursors are associated with the chick oviduct nuclear matrix. Biochemistry 21, 4945–4953.CrossRefGoogle Scholar
  51. 51).
    COOK, P.R., LANG, J., HAYDAY, A., LANIA, L., FRIED, M., CHRISWELL, D.J. and WYKE, J.A. (1982). Active viral genes in transformed cells lie close to the nuclear cage. EMBO J. 1, 447–452.Google Scholar
  52. 52).
    CIEJEK, E.M., TSAI, M.J. and O’MALLEY, B.W. (1983). Actively transcribed genes are associated with the nuclear matrix. Nature 306, 607–609.CrossRefGoogle Scholar
  53. 53).
    COOK, P.R. and BRAZELL, I.A. (1980). Mapping sequences in loops of nuclear DNA by their progressive detachment from the nuclear cage. Nucleic Acids Res. 8, 2895–2905.CrossRefGoogle Scholar
  54. 54).
    VEDEL, M., GOMEZ-GARCIA, M., SALA, M. and SALA-TREPAT, J.M. (1983). Changes in methylation pattern of albumin and α-fetoprotein genes in developing rat liver and neoplasia. Nucl. Acids Res. 11, 4335–4354.CrossRefGoogle Scholar
  55. 55).
    NAHON, J.L., GAL, A., ERDOS, T. and SALA-TREPAT, J.M. (1984). Differential DNase I sensitivity of the albumin and α-fetoprotein genes in chromatin from rat tissues and cell lines. Proc. Natl. Acad. Sci. USA 81, 5031–5035.CrossRefGoogle Scholar
  56. 56).
    RAZIN, A. and RIGGS, A.D. (1980). DNA methylation and gene function. Science 210, 604–610.CrossRefGoogle Scholar
  57. 57).
    TAYLOR, J.H. ed. (1983). DNA methylation and cellular differentiation. Cell Biology monographs. Vol. 11. Springer Verlag, Wien-New York.Google Scholar
  58. 58).
    NAKHASI, H.L., LUNCH, K.R., DOLAN, K.P., UNTERMAN, R.D. and FEIGELSON, P. (1981). Covalent modification and repressed transcription of a gene in hepatoma cells. Proc. Natl. Acad. Sci. USA 75, 834–837.CrossRefGoogle Scholar
  59. 59).
    OTT, M.O., SPERLING, L., CASSIO, D., LEVILLIERS, J., SALA-TREPAT, J.M. and WEISS, M.C. (1982). Undermethylation at the 5′-end of the albumin gene is necessary but not sufficient for albumin production by rat hepatoma cells in culture. Cell 30, 825–833.CrossRefGoogle Scholar
  60. 60).
    KUNNATH, L. and LOCKER, J. (1983). Developmental changes in the methylation of the rat albumin and α-fetoprotein genes. EMBO J. 2, 317–324.Google Scholar
  61. 61).
    WEINTRAUB, H. and GROUDINE, M. (1976). Chromosomal subunits in active genes have an altered conformation: Globin genes are digested by deoxyribonuclease I in red blood cell nuclei but not in fibroblast nuclei. Science 193, 848–856.CrossRefGoogle Scholar
  62. 62).
    MATHIS, D., OUDET, P. and CHAMBON, P. (1980). Structure of transcribing chromatin. Progress Nucleic Acid Res. and Mol. Biol. 24, 1–54.CrossRefGoogle Scholar
  63. 63).
    WU, C. (1980). The 5’ end of Drosophila heat schock genes in chromatin are hypersensitive to DNase I. Nature 286, 854–860.CrossRefGoogle Scholar
  64. 64).
    ELGIN, S.C.R. (1981). DNase I-hypersensitive sites of chromatin. Cell 27, 413–415.CrossRefGoogle Scholar
  65. 65).
    NAHON, J.L. and SALA-TREPAT, J.M. (1984). Tissue-specific DNase I hypersensitive sites in rat chromatin are present upstream from the 5′ ends of the albumin and α-fetoprotein genes. J. Cell Biol. 99, 139a.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • José M. Sala-Trepat
    • 1
  • Anne Poliard
    • 1
  • Isabelle Tratner
    • 1
  • Maryse Poiret
    • 1
  • Mariela Gomez-Garcia
    • 1
  • Andras Gal
    • 1
  • Jean-Louis Nahon
    • 1
  • Monique Frain
    • 1
  1. 1.Laboratoire d’EnzymologieC.N.R.S.Gif-sur-YvetteFrance

Personalised recommendations