Advertisement

Use of Antibodies to Purify Cholinergic Nerve Terminals

  • Peter J. Richardson
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 15B)

Abstract

In the isolation of nerve terminals from the mammalian CNS — crucial for elucidating synaptic biochemistry [1] — a major limitation is the heterogeneity of the preparations, particularly the diversity of distinct neuronal types present. Previous attempts to purify neurotransmitter-specific nerve terminals were frustrated by similarities in density and size of most terminals [2], while the absence of known transmitter-specific surface antigens prevented the application of immunological techniques.

Keywords

Nerve Terminal Affinity Purification Electric Organ ChoLine Uptake Vera Tridine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gray, E.G. & Whittaker, V.P. (1962) J. Anat. 96, 78–87.Google Scholar
  2. 2.
    Jones, D.G. (1975) Synapses and Synaptosomes, Chapman & Hall, London; see pp. 49–94.Google Scholar
  3. 3.
    Richardson, P.J., Siddle, K. & Luzio, J.P. (1984) Biochem. J. 219, 647–654.Google Scholar
  4. 4.
    Varon, S. (1977) in Cell, Tissue and Organ Culture in Neurobiology (Federoff, S. & Hertz, L., eds.), Acad. Press, N. York, 236–261.Google Scholar
  5. 5.
    Luzio, J.P., Newby, A.C. & Hales, C.N. (1976) Biochem.J. 154, 11–21.Google Scholar
  6. 6.
    Luzio, J.P. (1977) in Membranous Elements and Movement of Molecules (Vol. 6, this series; Reid, E., ed.), Horwood, Chichester, pp. 131–142.Google Scholar
  7. 7.
    Westwood, S.A., Luzio, J.P., Flockhart, D.A. & Siddle, K. (1979) Biochim. Biophys. Acta 583, 454–466.CrossRefGoogle Scholar
  8. 8.
    Ito, A. & Palade, G. (1978) J. Cell Biol. 79, 590–597.CrossRefGoogle Scholar
  9. 9.
    Matthew, W.D., Tsavaler, L. & Reichardt, L.F. (1981) J. CeZZ Biol. 91, 257–269.CrossRefGoogle Scholar
  10. 10.
    Luzio, J.P. & Stanley, K.K. (1983) Biochem. J. 216, 27–36.Google Scholar
  11. 11.
    de Kretser, T.A., Bodmer, J.G. & Bodmer, W.F. (1980) Tissue Antigens 16, 317–325.CrossRefGoogle Scholar
  12. 12.
    Pontremoli, S., Melloni, E., Damiani, G., Michetti, M., Salamino, F., Sparatore, B. & Horecker, B.L. (1984) Arch. Biochem. Biophys. 233, 267–271.CrossRefGoogle Scholar
  13. 13.
    Schachner, M. (1982) J. Neurochem. 38, 1605–1614.CrossRefGoogle Scholar
  14. 14.
    Jones, R.T., Walker, J.H., Richardson, P.J., Fox, G.Q. & Whittaker, V.P. (1981) CeZZ Tissue Res. 218, 355–373.CrossRefGoogle Scholar
  15. 15.
    Israel, M., Manaranche, R., Mastour-Franchon, P. & Morel, N. (1976) Biochem. J. 160, 113–115.Google Scholar
  16. 16.
    Richardson, P.J. (1983) J. Neurochem. 41, 640–648.CrossRefGoogle Scholar
  17. 17.
    Hales, C.N. & Woodhead, J.S. (1980) Meths. Enzymol. 70, 334–355.CrossRefGoogle Scholar
  18. 18.
    Potter, P.E., Meek, J.L. & Neff, N.H. (1983) J. Neurochem. 41, 188–194.CrossRefGoogle Scholar
  19. 19.
    Marchbanks, R.M. & Israel, M. (1971) J. Neurochem. 18, 439–448.CrossRefGoogle Scholar
  20. 20.
    Silver, A. (1974) The Biology of Cholinesterases, North-Holland, Amsterdam, 596 pp.Google Scholar
  21. 21.
    Ghetie, V., Mota, G. & Sjoquist, J. (1976) J. Immunol. Meths. 21, 133–141.CrossRefGoogle Scholar
  22. 22.
    Ito, A. & Palade, G. (1978) J. Cell BioZ. 79, 590–597.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Peter J. Richardson
    • 1
  1. 1.Department of Clinical BiochemistryUniversity of Cambridge, Addenbrooke’s HospitalCambridgeUK

Personalised recommendations