Changes in the Avian Visual Wulst Following Early Monocular Deprivation

  • Paola Bagnoli
  • Giovanni Casini
  • Roberto Alesci
Part of the Advances in Behavioral Biology book series (ABBI, volume 28)


Since the work of Wiesel and Hubel (1963), the mammalian visual system has been extensively used as a model for studying developmental plasticity in the brain. Recently, the avian visual system has also been used for research examining the neuronal correlates of experience-dependent changes. In particular the visual Wulst was shown to be involved in plastic changes occurring as a result of early monocular deprivation (Burkhalter et al, 1982).


ChAT Activity Monocular Deprivation Anterior Thalamus Choline Acetyl Transferase Noradrenergic Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagnoli, P., and Burkhalter, A., 1983, Organization of the afferent projection to pigeon Wulst, J. Comp. Neurol., 214:103.CrossRefGoogle Scholar
  2. Bagnoli, P., and Casini, G., 1984, Regional distribution of catecholaminergic terminals in the pigeon visual system, Brain Res., in press.Google Scholar
  3. Bagnoli, P., Beaudet, A., Stella, M., and Cuénod, M., 1981, Selective retrograde labeling of cholinergic neurons with[3H]-choline, J. Neurosci. 1:691.Google Scholar
  4. Bagnoli, P., Burkhalter, A., Vischer, A., Henke, H., and Cuénod, M., 1982, Effects of early monocular deprivation on choline acetyltransferase and glutamic acid decarboxylase in pigeon visual Wulst, Brain Res., 247:289.CrossRefGoogle Scholar
  5. Bagnoli, P., Burkhalter, A., Streit, P., and Cuénod, M., 1983a, [3H]-GABA selective retrograde labeling of neurons in the pigeon thalamo-Wulst pathway, Arch. Ital. Biol., 121:47.Google Scholar
  6. Bagnoli, P., Barsellotti, R., Pellegrini, M., and Alesci, R., 1983b, Norepinephrine level in developing pigeon brain: effect of monocular deprivation on the Wulst noradrenergic system, Develop. Brain Res., 10:243.CrossRefGoogle Scholar
  7. Bagnoli, P., Porciatti, V., and Barsellotti, R., 1983c, The development of spatial resolution in the pigeon retina, Perception, 12:A20.Google Scholar
  8. Bagnoli, P., Porciatti, V., Lanfranchi, A., and Bedini, C., 1984, Developing pigeon retina: light evoked responses and ultrastucture of outer segments and synapses, J. Comp. Neurol., in press.Google Scholar
  9. Biesold, D., Bigl, V., and Uzbekov, M., 1977, Effects of sensory deprivation upon the development of transmitter systems in the visual system, Act. Nerv. Super. (Praha), 19:154.Google Scholar
  10. Bigl, V., Biesold, D., and Weisz, K., 1974, The influence of functional alteration on monoamine oxidase and catecol-O-methyltransferase in the visual pathway of rats, J. Neurochem;, 22:509.CrossRefGoogle Scholar
  11. Blue, M.E., and Pernavelas, J.G., 1982, The effect of neonatal 6-Hydroxydopamine treatment on synaptogenesis in the visual cortex of the rat, J. Comp. Neurol., 205:199.CrossRefGoogle Scholar
  12. Burkhalter, A., and Cuenod, M., 1978, Changes in pattern discrimination learning induced by visual deprivation in normal and commissurotomized pigeons, Exp. Brain Res., 31:369.CrossRefGoogle Scholar
  13. Burkhalter, A., Streit, P., Bagnoli, P., Vischer, A., Henke, H., and Cuenod, M., 1982, Deprivation induced functional modifications in the pigeon visual system, in. “Neuronal Plasticity and Memory Formation”, IBRO Monograph Series Vol. 9, C. Aimone Marsan and H. Matties, eds., Raven Press, N.Y.Google Scholar
  14. Cohen, D.H., and Karten, H.J., 1974, The structural organization of avian brain: an overview, in “Birds Brain and Behaviour”, I.J. Goodman and M.W. Schein, eds., Academic Press, N.Y.Google Scholar
  15. Coyle, J.T., and Molliver, M.E., 1976, Major innervation of newborn rat cortex by monoaminergic neurons, Science, 196:444.CrossRefGoogle Scholar
  16. Cuenod, M., Bagnoli, P., Beaudet, A., Burkhalter, A., Henke, H., Knüsel, B., and Vischer, A., 1981, Behavioural and biochemical changes induced by early monocular deprivation in the pigeon, Doc. Ophthalmol. Proc. Ser., 30:230.Google Scholar
  17. Cuénod, M., Bagnoli, P., Beaudet, A., Rustioni, A., Wiklund, L., and Streit, P., 1982, Transmitter-specific retrograde labeling of neurons, in: “Cytochemical Methods in Neuroanatomy”, S.L. Palay and V. Chan-Palay eds., A.R. Liss, Inc., N.Y.Google Scholar
  18. Davies, D.C., Horn, G., and McCabe, B.J., 1983, Changes in telencephalic catecholamine levels in the domestic chick. Effect of age and visual experience. Develop. Brain Res., 10:251.CrossRefGoogle Scholar
  19. Foote, S.L., Bloom, F.E., and Aston-Jones, G., 1983, Nucleus Locus coeruleus: new evidence of anatomical and physiological specificity, Phys. Rev., 63:844.Google Scholar
  20. Ghione, S., Pellegrini, M., and Clerico, A., 1979, A sensitive and accurate plasma noradrenaline assay using a modified fluorimetric method, Clin. Chim. Acta, 97:89.CrossRefGoogle Scholar
  21. Henke, H., 1981, “The central part of the avian visual system”, Ph. D. Diss. Univ. of Zürich, Switzerland.Google Scholar
  22. Hodos, W., 1976, Vision and the visual system: a bird’s eye view, in: “Progress in Psychobiology and Physiological Psychology”, Vol.6, J.M. Sprague and A.N. Epstein, eds., Academic Press, N.Y.Google Scholar
  23. Jonsson, G., and Sachs, C., 1972, Neurochemical properties of adrenergic nerves regenerated after 6-hydroxydopamine, J. Neurochem., 19:2577.CrossRefGoogle Scholar
  24. Karten, H.J., 1979, Visual lemniscal pathways in birds, in: “Neural Mechanisms of Behaviour in the Pigeon”, A.M. Granda and J.H. Maxwell, eds., Plenum Press, N.Y.Google Scholar
  25. Karten, H.J., and Hodos, W.A., 1967, “A Stereotaxic Atlas of the Brain of the Pigeon (Columba Livia)”, John Hopkins Press, Baltimore.Google Scholar
  26. Levitt, P., and Moore, R.Y., 1979, Development of the noradrenergic innervation of neocortex, Brain Res., 162:243.CrossRefGoogle Scholar
  27. Lidov, H.G.W., Molliver, M.E., and Zecevic, N.R., 1978, Characterization of the monoaminergic innervation of immature rat neocortex: a histofluo-rescence analysis, J. Comp. Neurol., 181:663.CrossRefGoogle Scholar
  28. Nakamura, S., Shirokawa, T., and Sakaguchi, T., 1984, Increased projection from the Locus coeruleus to the lateral geniculate nucleus and visual cortex in young and adult rats following unilateral enucleation, Neurosci. Lett., 49:77.CrossRefGoogle Scholar
  29. Pellegrini, M., 1982, Description of a rapid fluorimetric method for the determination of catecholamines in plasma (90 min.), Elettromedicali e Strumentazione Scientifica, 11/12:55.Google Scholar
  30. Pettigrew, J.D., 1978, Comparison of the retinotopic prganization of the visual Wulst in nocturnal and diurnal raptors, with a note on the evolution of frontal vision, in: “Frontiers in Visual Science”, S.F. Cool and E.I. Smith, eds., Springer Verlag, N.Y.Google Scholar
  31. Pettigrew, J.D., and Konishi, M., 1976, Effect of monocular deprivation on binocular neurons in the owl’s visual Wulst, Nature, 264:753.CrossRefGoogle Scholar
  32. Renzini, V., Brunori, C.A., and Valori, C., 1970, A sensitive and specific fluorimetric method for the determination of noradrenaline and adre naline in human plasma, Clin. Chim. Acta. 30:587.CrossRefGoogle Scholar
  33. Sachs, C., and Jonsson, G., 1973, Quantitative microfluorimetric and neurochemical studies on adrenergic nerves after axotomy, J. Histochem. Cytochem., 21:902.CrossRefGoogle Scholar
  34. Schliebs, R., Burgoyne, R.D., and Bigl, V., 1982, The effects of visual deprivation on ß-adrenergic receptors in the visual centres of the rat brain, J. Neurochem., 38:1038.CrossRefGoogle Scholar
  35. Schlumpf, M., Lichtensteiger, W., Shoemaker, W., and Bloom, F.E., 1980, Fetal monoamine systems: early stages and cortical projections, in: “Biogenic Amines in Development”, H. Parvez and S. Parvez, eds., Elsevier/North-Holland Biomed. Press, Amsterdam.Google Scholar
  36. Vischer, A., Henke, H., and Cuenod, M., 1982, Neurotransmitter receptor ligand binding and enzyme regional distribution in the pigeon, J. Neurochem., 38:1372.CrossRefGoogle Scholar
  37. Wiesel, T.N., and Hubel, D.H., 1963, Single-cell responses in striate cortex of kittens deprived of vision in one eye, J. Neurophysiol., 26:1003.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Paola Bagnoli
    • 1
    • 2
  • Giovanni Casini
    • 1
    • 2
  • Roberto Alesci
    • 1
    • 2
  1. 1.Istituto di Fisiologia dell’ UniversitàPisaItaly
  2. 2.Istituto di Neurofisiologia del CNRPisaItaly

Personalised recommendations