Gangliosides, Neuroplasticity, and Behavioral Recovery after Brain Damage

  • Bernhard A. Sabel
  • Gary L. Dunbar
  • Barry Fass
  • Donald G. Stein
Part of the Advances in Behavioral Biology book series (ABBI, volume 28)


One of the central tenets of modern Neuroscience is that axons in the adult mammalian brain typically do not regenerate following injury. This tenet does not imply that axons in the brain are incapable of any growth at all. Rather, intact axons can grow new branches and/or terminals which replace those lost as a consequence of damage to other areas of the brain (Cotman, 1978; Cotman et al., 1981). In at least some situations, the newly established synapses have been shown to operate electrophysiologically and there is evidence that they might contribute to behavioral recovery (Steward, 1982).


Tyrosine Hydroxylase Rotational Behavior Nigrostriatal System Behavioral Recovery Neural Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnati, L. F., Fuxe, K., Calza, L., Benfenati, F., Cavicchioli, L., Toffano, G., and Goldstein, M., 1983, Gangliosides increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function in striatum of rats by collateral sprouting, Acta Physiol. Scand., 119:347.CrossRefGoogle Scholar
  2. Bass, N. H., 1981, Ganglioside sialic acid as a quantitative neurochemical index of the integrity of synaptic function in cognitive disorders of development and aging, in: “Gangliosides in Neurological and Neuromuscular Function, Development, and Repair,” M. M. Rapport and A. Gorio, eds., Raven Press, New York.Google Scholar
  3. Ceccarelli, B., Aporti, F., and Finesso, M., 1976, Effects of brain gangliosides on functional recovery in experimental regeneration and reinnervation, in: “Ganglioside Function: Biochemical and Pharmacological Implications,” G. Porcellati, B. Ceccarelli, and G. Tettamanti, eds., Plenum Press, New York.Google Scholar
  4. Cotman, C. W., 1978, “Neuronal Plasticity,” Raven Press, New York.Google Scholar
  5. Cotman, C. W., Matthews, D. A., Taylor, D., and Lynch, G., 1973, Synaptic rearrangement in the dentate gyrus: histochemical evidence of readjustments after lesions in immature and adult rats, Proc. Natl. Acad. Sci., U. S. A., 70:3473.CrossRefGoogle Scholar
  6. Cotman, C. W. and Nadler, J. V., 1978, Reactive synaptogenesis in the hippocampus, in: “Neuronal Plasticity,” C. W. Cotman, ed., Raven Press, New York.Google Scholar
  7. Cotman, C. W., Nieto-Sampedro, M., and Harris, E. W., 1981, Synapse replacement in the nervous system of adult vertebrates, Physiol. Rev., 61:684.Google Scholar
  8. Fass, B., and Ramirez, J. J., 1984, Effects of ganglioside treatments on lesion-induced behavioral impairments and sprouting in the CNS, J. Neurosci. Res., 12:445.CrossRefGoogle Scholar
  9. Ferrari, G., Fabris, M., and Gorio, A., 1983, Gangliosides enhance neurite outgrowth in PC12 cells, Devel. Brain Res., 8:215.CrossRefGoogle Scholar
  10. Gage, F. H., Bjorklund, A., and Stenevi, U., 1983, Reinnervation of the partially deafferented hippocampus by compensatory collateral sproutting from spared cholinergic and noradrenergic afferents, Brain Res., 268: 27.CrossRefGoogle Scholar
  11. Gorio, A., Carmignoto, G., Facci, L., and Finesso, M., 1980, Motor nerve sprouting induced by ganglioside treatment. Possible implications for gangliosides on neuronal growth, Brain Res., 197:236.CrossRefGoogle Scholar
  12. Grafstein, B., Yip, H. K., and Meiri, H., 1983, Techniques for improving axonal regeneration: assay in goldfish optic nerve, in: “Nervous System Regeneration,” B. Haber, J. R. Perez-Polo, G. A. Hashim, and A. M. G. Stella, eds., A. R. Liss, New York.Google Scholar
  13. Kalia, M., and DiPalma, J. R., 1982, Ganglioside-induced acceleration of axonal transport following nerve crush injury in the rat, Neurosci. Lett., 34:1.CrossRefGoogle Scholar
  14. Karpiak, S. E., 1983, Ganglioside treatment improves recovery of alternation behavior after unilateral entorhinal cortex lesion, Exp. Neurol., 81:330.CrossRefGoogle Scholar
  15. Karpiak, S. E., and Mahadik, S. P., 1984, Reduction of cerebral edema with GMl ganglioside, J.Neurosci.Res., 12:485.CrossRefGoogle Scholar
  16. Karpiak, S. E., Vilim, F., and Mahadik, S. P., 1984, Gangliosides accelerate rat neonatal learning and levels of cortical acetylcholinesterase, Devel. Neurosci., 6:127.CrossRefGoogle Scholar
  17. Kasarskis, E. J., Karpiak, S. E., Rapport, M. M., Yu, R. K., and Bass, N. H., 1981, Abnormal maturation of cerebral cortex and behavioral deficit in adult rats after neonatal administration of antibodies to gangliosides, Devel. Brain Res., 1:25.CrossRefGoogle Scholar
  18. Katoh-Semba, R., Skaper, S. D., and Varon, S., 1984, Interaction of GMl ganglioside with PC12 pheochromocytoma cells: serum- and NGF-dependent effects on neuritic growth (and proliferation), J. Neurosci. Res., 12:299.CrossRefGoogle Scholar
  19. Klenk, E., 1935, Uber die Natur der Phosphatide und anderer Lipoide des Gehirns und der Leber bei der Niemann-Pickschen Krankheit, Hoppe Seylers Z. Physiol. Chem., 235: 24.CrossRefGoogle Scholar
  20. Laurence, S., and Stein, D. G., 1978, Concepts of recovery, in: “Recovery From Brain Damage: Research and Theory,” S. Finger ed., Plenum Press, New York.Google Scholar
  21. Ledeen, R. W., 1978, Ganglioside structures and distribution: are they localized at the nerve ending?, J. Supramolec. Struct., 8:1.CrossRefGoogle Scholar
  22. Ledeen, R. W., 1984, Biology of gangliosides: neuritogenic and neuro-notrophic properties, J. Neurosci. Res., 12:147.CrossRefGoogle Scholar
  23. Leon, A., Benvegnu, D., Dal Toso, R., Presti, D., Facci, L., Giorgi, O., and Toffano, G., 1984, Dorsal root ganglia and nerve growth factor: a model for understanding the mechanism of GMl effects on neuronal repair, J.Neurosci. Res., 12:277.CrossRefGoogle Scholar
  24. Loesche, J., and Steward, O., 1977, Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: recovery of alternation performance following unilateral entorhinal cortex lesions, Brain Res. Bull., 2:31.CrossRefGoogle Scholar
  25. Massarelli, A. C., Dreyfus, H., Eclancher, F., and Massarelli, R., 1984, Effect of gangliosides on behavioral recovery after early septal lesion in rats, Paper presented at the European Symposium on Cellular and Pathological Aspects of Glycoconjugate Metabolism, Strasbourg, France.Google Scholar
  26. McCouch, G. P., Austin, G. M., Liu, C. N., and Liu, C. Y., 1958, Sprouting as a cause of spasticity, J.Neurophysiol., 21:205.Google Scholar
  27. Oderfeld-Nowak, B., Skup, M., Ulas, J., Jezierska, M., Gradkowska, M., and Zaremba, M., 1984, Effect of GMl ganglioside treatment on post-lesion responses of cholinergic enzymes in rat hippocampus after various partial deafferentations, J.Neurosci. Res., 12:409.CrossRefGoogle Scholar
  28. Pedata, F., Giovannelli, L., and Pepeu, G., 1984, GMl ganglioside facilitates the recovery of high-affinity choline uptake in the cerebral cortex of rats with a lesion of the nucleus basalis magnocellularis, J. Neurosci. Res., 12:421.CrossRefGoogle Scholar
  29. Pritzel, M., Huston, J. P., and Sarter, M., 1983, Behavioral and neuronal reorganization after unilateral substantia nigra lesions: evidence for increased interhemispheric nigrostriatal projections, Neurosci., 9:879.CrossRefGoogle Scholar
  30. Purpura, D. P., Pappas, G. D., and Baker, H. J., 1978, Fine structure of meganeurites and secondary growth processes in feline GMl- gangliosidosis, Brain Res., 143: 1.CrossRefGoogle Scholar
  31. Rahmann, H., 1980, Gangliosides and thermal adaptation, in: “Structure and Function of Gangliosides,” L. Svennerholm, H. Dreyfus, and P. F. Urban, eds., Plenum Press, New York.Google Scholar
  32. Roisen, F. J., Bartfeld, H., Nagele, R., and Yorke, G., 1981, Ganglioside stimulation of axonal sprouting in vitro, Science, 214:577.CrossRefGoogle Scholar
  33. Sabel, B. A., Dunbar, G. L., and Stein, D. G., 1984a, Gangliosides minimize behavioral deficits and enhance structural repair after brain injury, J.Neurosci. Res., 12:429.CrossRefGoogle Scholar
  34. Sabel, B. A., Slavin, M. D., and Stein, D. G., 1984b, GMl ganglioside treatment facilitates behavioral recovery following bilateral brain damage, Science, 225:340.CrossRefGoogle Scholar
  35. Schneider, G. E., and Jhaveri, S. R., 1974, Neuroanatomical correlates of spared or altered function after brain lesions in the newborn hamster, in: “Plasticity and Recovery of Function in the Central Nervous System,” D. G. Stein, J. J. Rosen, and N. Butters, eds., Academic Press, New York.Google Scholar
  36. Schultze, M. J., and Stein, D. G., 1975, Recovery of function in the albino rat following either simultaneous or seriatim lesions of the caudate nucleus, Exp. Neurol., 46:291.CrossRefGoogle Scholar
  37. Stanfield, B. B., and Cowan, W. M., 1982, The sprouting of septal afferents to the dentate gyrus after lesions of the entorhinal cortex in adult rats, Brain Res.. 232:162.CrossRefGoogle Scholar
  38. Steward, O., 1982, Assessing the functional significance of lesion-induced neuronal plasticity, in: “International Review of Neurobiology, vol. 23,” J. R. Smythies and R. J. Bradley, eds., Academic Press, New York.Google Scholar
  39. Steward, O., and Loesche, J., 1977, Quantitative autoradiographic analysis of the time course of proliferation of contralateral entorhinal efferents in the dentate gyrus denervated by ipsilateral entorhinal lesions, Brain Res., 125:11.CrossRefGoogle Scholar
  40. Suzuki, K., 1965, The pattern of mammalian brain gangliosides. III. Regional and developmental differences, J.Neurochem., 12:969.CrossRefGoogle Scholar
  41. Toffano, G., Savoini, G., Moroni, F., Lombardi, G., Calza, L., and Agnati, L. F., 1983, GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system, Brain Res., 261: 163.CrossRefGoogle Scholar
  42. Toffano, G., Savoini, G. E., Moroni, F., Lombardi, G., Calza, L., and Agnati, L. F., 1984, Chronic GMl ganglioside treatment reduces dopamine cell body degeneration in the substantia nigra after unilateral hemitransection in rat, Brain Res., 296:233.CrossRefGoogle Scholar
  43. Ungerstedt, U., 1971, Striatal dopamine release after amphetamine or nerve regeneration revealed by rotational behavior, Acta Physiol. Scand., suppl 367:49.Google Scholar
  44. Wiegant, H., 1971, Glycosphingolipids, Adv. Lipid. Res., 9:249.Google Scholar
  45. Wojcik, M., Ulas, J., and Oderfeld-Nowak, B., 1982, The stimulating effect of ganglioside injections on the recovery of choline acetyltransferase and acetylcholinesterase activities in the hippocampus of the rat after septal lesions, Neurosci., 7:495.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Bernhard A. Sabel
    • 2
  • Gary L. Dunbar
    • 1
  • Barry Fass
    • 1
  • Donald G. Stein
    • 1
  1. 1.Department of Psychology and Brain ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of PsychologyClark UniversityWorcesterUSA

Personalised recommendations