Advertisement

Vasopressin, Hippocampal Excitability and Paired-Pulse Potentiation

  • J. E. Smithson
  • M. W. Brown
Part of the Advances in Behavioral Biology book series (ABBI, volume 28)

Abstract

The essentially simple organization of the hippocampal formation renders it well suited to electrophysiological and pharmacological studies. The basic structure comprises a trisynaptic circuit repeated in lamellar fashion along its longitudinal axis. This cellular architecture allows the extracellular recording of large evoked potentials which closely reflect events at the level of the single cell (Andersen et al., 1971). Furthermore, thin transverse sections can be prepared from the hippocampus and maintained in vitro whilst remaining functionally intact and thus providing a convenient model for the study of the actions of pharmacological agents (Langmoen and Andersen, 1981; Schwartzkroin, 1981).

Keywords

Pyramidal Cell Hippocampal Slice Arginine Vasopressin Population Spike Perforant Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alger, B. E., and Teyler, T. J., 1976, Long term and short term plasticity in the CA1, CA3 and dentate regions of the rat hippocampal slice, Brain Res., 110:463CrossRefGoogle Scholar
  2. Andersen, P., 1975, Organisation of hippocampal neurons and their interconnections, in “The Hippocampus”, Vol. 1, R. L. Isaacson and K. H. Pribram, eds., Plenum Press, New York.Google Scholar
  3. Andersen, P., 1983, Operational principles of hippocampal neurons, in: “Neurobiology of the hippocampus”, W. Scifert, Ed., Academic Press, London.Google Scholar
  4. Andersen, P., Bliss, T. V. P., and Skrede, K. K., 1971, Unit analysis of hippocampal population spikes, Exp. Brain Res., 13:208Google Scholar
  5. Auerbach, S., and Lipton, P., 1982, Vasopressin augments depolarizationinduced release and synthesis of serotonin in hippocampal slices, J. Neurosci., 2:477Google Scholar
  6. Bliss, T. V. P., Goddard, G. V., and Riives, M., 1983, Reduction of longterm potentiation in the dentate gyrus of the rat following selective depletion of monoamines, J. Physiol., 334:475Google Scholar
  7. Brown, M. W., Rose, D., and Ahlquist, J., 1983, Amnesia-producing drugs affect hippocampal frequency potentiation, Neuroscience, 10:697CrossRefGoogle Scholar
  8. Buijs, R. M., 1978, Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat, Cell Tiss. Res., 192:423CrossRefGoogle Scholar
  9. Buijs, R. M., and Van Heerikhuize, J. J., 1982, Vasopressin and oxytocin release in the brain — synaptic event, Brain Res., 252:71CrossRefGoogle Scholar
  10. Burns, B. D., Ebenezer, I. S., Summerlee, A. J. S., and Webb, A. C. 1983a, Does arginine vasopressin alter an electrophysiological measure of arousal in unrestrained rats and rabbits? J. Physiol., 349:26PGoogle Scholar
  11. Burns, B. D., Ebenezer, I. S., and Webb, A. C., 1983b, The effects of arginine vasopressin upon the electrical activity of the cerebral cortices of rats anaesthetized with urethane, J. Physiol., 349:25PGoogle Scholar
  12. Church, A. C., 1983, Vasopressin potentiates the stimulation of cAMP accumulation by norepinephrine, Peptides, 4:261CrossRefGoogle Scholar
  13. Creager, R., Dunwiddie, T., and Lynch, G., 1980, Paired-pulse and frequency facilitation in the CAl region of the in vitro rat hippocampus, J. Physiol., 299:409Google Scholar
  14. De Wied, D., 1980, Behavioural actions of neurohypophysial peptides, Proc. Roy. Soc. (Lond.) B, 210:183CrossRefGoogle Scholar
  15. Gash, D. M., and Thomas, G. J., 1984, Reply to ‘The importance of vasopressin in memory’, Trends Neurosci., 7:64CrossRefGoogle Scholar
  16. Joels, M., and Urban, I. J. A., 1982, The effects of microiontophoretically applied vasopressin and oxytocin on single neurones in the septum and dorsal hippocampus of the rat, Neurosci. Lett., 33:79CrossRefGoogle Scholar
  17. Kandel, E. R., 1981, Calcium and the control of synaptic strength by learning, Nature, 293:697CrossRefGoogle Scholar
  18. Kovacs, G. L., Bohus, B., and Versteeg, D. H. G., 1979, The effects of vasopressin on memory processes: the role of noradrenergic neurotransmission, Neuroscience, 4:1529CrossRefGoogle Scholar
  19. Langmoen, T. A., and Andersen, P., 1981, The hippocampal slice in vitro. A description of the technique and some examples of the opportunities it offers, in: “Electrophysiology of Isolated Mammalian CNS Preparations”, G. A. Kerkut and H. V. Wheal, eds., Academic Press, London.Google Scholar
  20. Lømo, T., 1971, Potentiation of monosynaptic EPSPs in the perforant path — dentate granule cell synapse, Exp. Brain Res., 12:46Google Scholar
  21. McNaughton, B. L., 1983, Activity dependent modulation of hippocampal synaptic efficacy: some implications for memory processes, in: “Neurobiology of the hippocampus”, W. Scifert, Ed., Academic Press, London.Google Scholar
  22. Mühlethaler, M., Charpak, S., and Dreifuss, J. J., 1984, Contrasting effects of neurohypophysial peptides on pyramidal and non-pyramidal neurones in the rat hippocampus, Brain Res., 308:97CrossRefGoogle Scholar
  23. Mühlethaler, M., Dreifuss, J. J., and Gähwiler, B. H., 1982, Vasopressin excites hippocampal neurones, Nature, 296:749CrossRefGoogle Scholar
  24. Schwartzkroin, P. A,, 1981, To slice or not to slice, in.: “Electrophysiology of Isolated Mammalian CNS Preparations”, G. A. Kerkut and H. V. Wheal, eds., Academic Press, London.Google Scholar
  25. Schwartzkroin, P. A., and Knowles, W. D., 1983, Local interactions in the hippocampus, Trends Neurosci., 6:88CrossRefGoogle Scholar
  26. Scoville, W. B., and Milner, B., 1957, Loss of recent memory after bilateral hippocampal lesions, J. Neurol. Neurosurg. Psychiat., 20:11CrossRefGoogle Scholar
  27. Wheal, H. V., 1981, Characteristics of CAl cells in the rat hippocampus in vitro, in: “Electrophysiology of Isolated Mammalian CNS Preparations”, G. A. Kerkut and H. V. Wheal, eds., Academic Press, London.Google Scholar
  28. Zieglgänsberger, W., French, E. D., Siggins, G. R., and Bloom, F. E. 1979, Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons, Science, 205:414CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • J. E. Smithson
    • 1
  • M. W. Brown
    • 1
  1. 1.Department of Anatomy, The Medical School BristolUniversity of BristolBristolEngland

Personalised recommendations