Advertisement

Effects of Central Administration of Corticosterone or Adrenalectomy in Mice on Memory and Evoked Activity in the Hippocampus

  • Edith Pomet
  • Jacques Micheau
  • Edmond Carlier
  • Bernard Soumireu-Mourat
Part of the Advances in Behavioral Biology book series (ABBI, volume 28)

Abstract

There is now a large body of evidence for corticosteroid actions on brain and behavior. Some authors have emphasized that corticosterone can play a role in adaptive behaviors, and particularly in learning and memory, through interactions with hippocampal functions (McEwen, 1979; McEwen and Micco, 1980); the hippocampus could be the major glucocorticoid target site of the central nervous system (CNS). Relations between steroids and the hippocampus have been shown in different ways, mainly in rats. Lesions or stimulations of the hippocampal system modify the pituitary adrenocortical functions (Feldman and Conforti, 1980; Feldman et al., 1982; Dunn and Orr, 1984; and review in Pfaff et al., 1971, and Bohus, 1975). Conversely, modifications of circulating corticosterone levels change morphological aspects of hippocampal neurons (Scheff and Cotman, 1982) and induce neurochemical hippocampal modifications (Etgen et al., 1979; McEwen and Micco, 1980; Nestler et al., 1981). In aging, correlations have been observed between degeneration in the hippocampus and plasma corticosterone levels (Landfield and Lynch, 1977). Moreover, steroids can modulate electrophysiological activity of the hippocampus (review in McEwen, 1979) as measured by spontaneous cell activity (Pfaff et al., 1971) as well as by commissural evoked potentials (Dana et al., 1982).

Keywords

Passive Avoidance Mineralocorticoid Receptor Extinction Session Population Spike Learning Session 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaumont, K., and Fanestil, D.D., 1983, Characterization of rat aldosterone receptors reveals high affinity for corticosterone, Endocrinology, 113:2043.CrossRefGoogle Scholar
  2. Bohus, B., 1973, Pituitary-adrenal influences on avoidance and approach behavior of the rat, Progr. Brain Res., 9:407.CrossRefGoogle Scholar
  3. Bohus, B., 1975, Pituitary-adrenal system hormone in: “The hippocampus”, R.L. Isaacson and K.H. Pribram, eds, Plenum Press, New York.Google Scholar
  4. Bohus, B., De Kloet, E.R., and Veldhuis, H.D., 1982, Adrenal steroids and behavioral adaptation: relationship to brain corticoid receptors, in: “Adrenal actions on brain”, Current topics in Neuroendocrinology, vol.2, D. Ganten and D. Pfaff, eds., Springer Verlag, Berlin.Google Scholar
  5. Borrell, J., De Kloet, E.R., and Bohus, B., 1984, Corticosterone decreases the efficacy of adrenaline to affect passive avoidance retention of adrenalectomized rats, Life Sci., 34:99CrossRefGoogle Scholar
  6. Butte, J.C., Kakihana, R., and Noble, E.P., 1972, Rat and mouse brain corticosterone, Endocrinology, 90:1091.CrossRefGoogle Scholar
  7. Coirini, H., Marusic, E.T., De Nicola, A.F., Rainbow, T.C., and McEwen, B.S., 1983, Identification of mineralocorticoid binding sites in rat brain by competition studies and density gradient centrifugation, Neuroendocrinology, 37:354.CrossRefGoogle Scholar
  8. Cottrell, G.A., and Nakajima, S., 1977, Effect of corticosteroids in the hippocampus on passive avoidance behavior in the rat, Pharmac. Biochem. Behav., 7:277.CrossRefGoogle Scholar
  9. Cottrell, G.A., Nyakas, C., De Kloet, E.R., and Bohus, B., 1984, Hippocampal kindling: corticosterone modulation of induced Scizures, Brain Res., 309:377.CrossRefGoogle Scholar
  10. Dana, R.C., Gerren, R.A., Sternberg, D.B., Martinez, J.L. Jr, Hall, J., Stansbury, N.A., and Weinberger, N.M., 1982, Long-term potentiation is impaired by adrenalectomy and restored by corticosterone, Soc. Neurosci. Abs., 8:316.Google Scholar
  11. De Kloet, E.R., 1983, Function of steroid receptor systems in the central nervous system, J. Ster. Biochem., suppl. 19:162S.CrossRefGoogle Scholar
  12. Destrade, C., Soumireu-Mourat, B., and Cardo, B., 1973, Effects of post-trial hippocampal stimulation on acquisition of operant behavior in the mouse, Behav. Biol., 8:713.CrossRefGoogle Scholar
  13. Destrade, C., and Jaffard, R., 1978, Post-trial hippocampal and lateral hypothalamic electrical stimulation. Facilitation on long-term memory of appetitive and avoidance learning tasks, Behav. Biol., 22:354.CrossRefGoogle Scholar
  14. Dunn, J.D., and Orr, S.E., 1984, Differential plasma corticosterone responses to hippocampal stimulation, Exp. Brain Res., 54:1.CrossRefGoogle Scholar
  15. Etgen, A.M., Lee, K.S., and Lynch, G., 1979, Glucocorticoid modulation of specific protein metabolism in hippocampal slices maintained in vitro, Brain Res., 165:37.CrossRefGoogle Scholar
  16. Feldman, S., and Conforti, N., 1980, Participation of the dorsal hippocampus in the glucocorticoid feedback effect on adrenocortical activity, Neuroendocrinology, 30:52.CrossRefGoogle Scholar
  17. Feldman, S., Conforti, N., and Siegel, R.A., 1982, Adrenocortical responses following limbic stimulation in rats with hypothalamic deafferentations, Neuroendocrinology, 35:205.CrossRefGoogle Scholar
  18. Foy, M.R., and Teyler, T.J., 1983, 17- α -estradiol and 17- β-Estradiol in hippocampus, Brain Res. Bull., 10:735.CrossRefGoogle Scholar
  19. Garrud, P., Gray, J.A., and De Wied, D., 1974, Pituitary-adrenal hormones and extinction of rewarded behaviour in the rat, Physiol. Behav., 12:109.CrossRefGoogle Scholar
  20. Gold, P.E., and McGaugh, J.L., 1975, A single trace, two-process view of memory storage processes, in: “Short-term memory”, D. Deutsch and J.A. Deutsch, eds., Academic Press, New York.Google Scholar
  21. Hall, E.D., 1982, Glucocrticoid effects on central nervous excitability and synaptic transmission, Int. Rev. Neurobiol., 23:165.CrossRefGoogle Scholar
  22. Harris, K.M., and Teyler, T.J., 1983, Age differences in a circadian influence on hippocampal LTP, Brain Res., 261:69.CrossRefGoogle Scholar
  23. Henderson, N.D., 1968, Genetic analysis of acquisition and retention of a conditioned fear in mice, J. Comp. Physiol. Psychol., 65:325.CrossRefGoogle Scholar
  24. Landfield, P.W., and Lynch, G.S., 1977, Brain aging and plasma steroid levels: quantitative correlations, Soc. Neurosci. Abs., 3:111.Google Scholar
  25. Keller, B.T., Landes, G.M., and Kitos, P.A., 1982, Evidence for more than one mechanism of action of the glucocorticoid hormones, Biochim. Biophys. Acta, 717:228.CrossRefGoogle Scholar
  26. McEwen, B.S., 1979, Influences of adrenocortical hormones on pituitary and brain function, in: “Glucocorticoid hormone action”, Monographs on endocrinology, vol.12, J.D. Baxter and G.G. Rousseau, eds., Springer-Verlag, Berlin.Google Scholar
  27. McEwen, B.S., and Micco, D.J., 1980, Toward an understanding of the multiplicity of glucocorticoid actions on brain function and behavior, in: “Hormones and the brain”, D. De Wied and P.A. Van Keep, eds., MTP Press Ltd, Lancaster.Google Scholar
  28. Micco, D.J., McEwen, B.S., and Shein, W., 1979, Modulation of behavioral’inhibition in appetitive extinction following manipulation of adrenal steroids in rats: implications for involvement of the hippocampus, J. Comp. Physiol. Psychol., 93:323.CrossRefGoogle Scholar
  29. Moguilewsky, M., and Raynaud, J.P., 1980, Evidence for a specific mineralocorticoid receptor in rat pituitary and brain, J. Steroid Biochem., 12:309CrossRefGoogle Scholar
  30. Nestler, E.J., Rainbow, T.C., McEwen, B.S., and Greengard, P., 1981, Corticosterone increases the amount of protein 1, a neuron-specific phosphoprotein, in rat hippocampus, Science, 212:1162.CrossRefGoogle Scholar
  31. Nowicky, A.V., Vardaris, R.M., and Teyler, T.J., 1983, Corticosterone and long-term potentiation in the hippocampus, Soc. Neurosci. Abs., 9:1211Google Scholar
  32. Nyakas, CS., De Kloet, E.R., Veldhuis, H.D., and Bohus, B., 1983, Hippocampal corticosterone receptors and novelty-induced behavioral activity: effect of kainic acid lesion in the hippocampus, Brain Res., 288:219.CrossRefGoogle Scholar
  33. O’Reilly, H.M., Coleman, G.J., and Armstrong, S., 1981, Endogenous corticosterone alterations and appetitive learning in the rat, Physiol. Behav., 27:515.CrossRefGoogle Scholar
  34. Pfaff, D.W., Silva, M.T.A., and Weiss, J.M., 1971, Telemetered recording of hormone effects on hippocampal neurons, Science, 172:394.CrossRefGoogle Scholar
  35. Sapolsky, R.M., McEwen, B.S., and Rainbow, T.C., 1983, Quantitative autoradiography of [3H]corticosterone receptors in rat brain, Brain Res., 271:331.CrossRefGoogle Scholar
  36. Scheff, S.W., and Cotman, C.W., 1982, Chronic glucocorticoid therapy alters axon sprouting in the hippocampal dentate gyrus, Exp. Neurol., 76:644.CrossRefGoogle Scholar
  37. Veldhuis, H.D., and De Kloet, E.R., 1982, Significance of ACTH4–10 in the control of hippocampal corticosterone receptor capacity of hypophysectomized rats, Neuroendocrinology, 34:374.CrossRefGoogle Scholar
  38. Veldhuis, H.D., and De Kloet, E.R., 1983, Antagonistic effects of aldosterone on corticosterone-mediated changes in exploratory behavior of adrenalectomized rats, Horm. Behav., 17:225.CrossRefGoogle Scholar
  39. Veldhuis, H.D., Van Koppen, C., Van Ittersum, M., and De Kloet, E.R., 1982, Specificity of the adrenal receptor system in rat hippocampus, Endocrinology, 110:2044.CrossRefGoogle Scholar
  40. Van Wimersma Greidanus, Tj. B., and De Wied, D., 1969, Effects of intracerebral implantation of corticosteroids on extinction of an avoidance response in rats, Physiol. Behav., 4:365.CrossRefGoogle Scholar
  41. Van Wimersma Greidanus, Tj. B., 1970, Effects of steroids on extinction of an avoidance response in rats. A structure-activity relationship study, Progr. Brain Res., 32:185.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Edith Pomet
    • 1
  • Jacques Micheau
    • 2
  • Edmond Carlier
    • 1
  • Bernard Soumireu-Mourat
    • 1
  1. 1.Lab. Neurobiologie des Comportements, CNRS U.A. 372Université de ProvenceMarseillesFrance
  2. 2.Lab. PsychophysiologieUniv. Bordeaux IFrance

Personalised recommendations