Modulation of Selective Processes in Learning by Neocortical and Limbic Dopamine: Studies of Behavioural Strategies

  • Robert Oades
  • Michael Rea
  • Khalid Taghzouti
Part of the Advances in Behavioral Biology book series (ABBI, volume 28)


The main dopaminergic (DA) systems of the mammalian CNS are the diencephalic tubero-infundibular and incerto-hypothalamic (A11–14) and the mesencephalic long-axon (A8–10) projections to the forebrain (Lindvall and Björklund, 1978). The A9 group preferentially innervates the striatum and cingulate cortex (Beckstead et al., 1979), whereas the ventral tegmental area (VTA-A10) projects to the prefrontal, cingulate, suprarhinal and entorhinal cortices (mesocortical system, M/C) and underlying limbic structures such as the amygdala, septo-hippocampal complex and the nucleus accumbens (mesolimbic system, M/L, Simon, 1981).


Prefrontal Cortex Ventral Tegmental Area Latent Inhibition Entorhinal Cortex Active Avoidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beatty, W. and Carbone, C. 1980, Septal lesions, intramaze cues and spatial behavior in rats, Physiol. Behav. 24: 675.CrossRefGoogle Scholar
  2. Beckstead, R. M., 1979, An autoradiographic examination of corticostriatal and subcortical projections of the rnediodorsal projection (prefrontal) cortex in the rat, J. Comp. Neurol. 184: 4–3.Google Scholar
  3. Beckstead, R. M., Domesick, V. B..and Nauta, W. J. H., 1979, Efferent connections of the substantia nigra and ventral teg. mental area in the rat, Brain Res., 175: 191.CrossRefGoogle Scholar
  4. Brody, B. A. and Pribram, K. H., 1978, The role of frontal and parietal cortex in cognitive processing: tests of spatial and sequence functions, Brain, 101: 607.CrossRefGoogle Scholar
  5. Brozovski, T. J., Brown, R. M., Rosvold, H. E. and Goldman, P. S. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey, Science, 205: 929.Google Scholar
  6. Bruneau, N., Simon, H. and Le Moal, M., 1980, Dark-light emergence at two different times of the nycthemeral cycle in the four and twelve week old rat, Behav. Proc. 5: 281.CrossRefGoogle Scholar
  7. Burton, H. A. and Toga, A. W., 1982, Successive discrimination performance improves with increasing numbers of stimulus preexposures in septal rats, Behav. Neur. Biol., 34: 141.CrossRefGoogle Scholar
  8. Chafetz, M. D., Thompson, R. G., Evans, S. H. and Gage, F. H., Biochemical specificity of septal hyperreactivity: a behavioral discrimination, Behav. Brain Res., 1: 27.Google Scholar
  9. Cicerone, K. D., Lazar, R. M. and Shapiro, W. R., 1983, Effects of frontal lobe lesions on hypothesis sampling during concept formation, Neuropsychologia, 21: 513.CrossRefGoogle Scholar
  10. Clody, D. E. and Carlton, P. L., 1969, Behavioral effects of lesions of the medial septum of cats, J. Comp. Physiol. Psychol., 67: 344.CrossRefGoogle Scholar
  11. Cools, A. R., 1980, The role of neostriatal dopaminergic activity in sequencing and selecting behavioral strategies: facilitation of processes involved in selecting the best strategy in a stressful situation, Behav. Brain Res., 1: 361.CrossRefGoogle Scholar
  12. Crider, A., Solomon, P. and McMahon, M., 1982, Disruption of selective attention in the rat following chronic d-amphet-amine administration: relationship to schizophrenic attention disorder, Biol. Psychiat., 17: 351.Google Scholar
  13. Crowne, D. P., 1983, The frontal eye field and attention, Psychol. Bull., 93: 232.CrossRefGoogle Scholar
  14. Donovick, P. J., Burright, R. G. and Fink, E. A., 1979, Discrimination behavior of rats with septal lesions in a cuedeletion paradigm, Physiol. Behav., 22: 125.CrossRefGoogle Scholar
  15. Durkin, T. P., Hashem-Zadeh, H., Mandel, P., Kempf, J. and Ebel, A., 1983, Genotypic variation in the dopaminergic inhibitory control of striatal and hippocampal cholinergic activity in mice, Pharmac. Biochem. Behav., 19: 63.CrossRefGoogle Scholar
  16. Ellen, P., Dorsett, P. G. and Richardson, W. K., 1977, The effect of cue fading on the DRL performance of septal and normal rats, Physiol. Psychol., 5: 4–69.Google Scholar
  17. Ellen, P., Makohon, L. and Richardson, W. K., 1978, Response suppression on DRL by rats with septal damage, J. Comp. Physiol. Psychol., 92: 511.CrossRefGoogle Scholar
  18. Evenden, J. L. and Robbins, T. W., 1984, Win-stay behavior in the rat, Q. J. Exp. Psychol., 36B: 1.Google Scholar
  19. Galey, D., Durkin, T., Sifakis, G. and Jaffard, R., 1984, Amélioration de conduites spatiales spontanées et acquises après lésion des afférences dopaminergiques septales chez la souris: relations pobsibles avec l’activité cholinergique hippocampique, C. R.. Acad. Sci. Fr., in press.Google Scholar
  20. Haig, K. A., Rawlins, J. N. P., Olton, D. S., Mead, A. and Taylor, B., 1983, Food searching strategies of rats: variables affecting the relative strength of stay and shift strategies, J. Exp. Psychol. (Anim. Behav. Proc.) 9: 337.Google Scholar
  21. Le Moal, M., Stinus, L., Simon, H., Tassin, J-P., Thierry, A-M., Blanc, G., Glowinski, J. and Cardo, B., 1977, Behavioral effects of a lesion in the ventral mesencephalic tegmentum: evidence for involvement of A 10 dopaminergic neurons, Adv. Biochem. Psychopharmacol., 16: 237.Google Scholar
  22. Lindvall, O. and Björklund, A., 1978, Anatomy of the dopaminergic neuron system in the rat brain, Adv. Biochem. Psychopharmacol., 19: 1.Google Scholar
  23. Mackintosh, N., 1975, A theory of attention: variations in the associability of stimuli with reinforcement, Psychol. Rev., 82: 276.CrossRefGoogle Scholar
  24. Markowitsch, H. J. and Pritzel, M., 1976, Learning and the prefrontal cortex of the cat: anatomico-behavioral interrelation, Physiol. Psychol., 4: 24–7.Google Scholar
  25. Mercer, L. and Remley, N., 1979, Mapping of sensory responsive cells in septal area of the rat, Brain Res. Bull., 4: 4–83.CrossRefGoogle Scholar
  26. Mogenson, J. and Divac, I., 1984, Sequential behavior after modified prefrontal lesions in rat, Physiol. Psychol., 12: 4–1.Google Scholar
  27. Numan, R. and Lubar, J., 1974, Role of the proreal gyrus and septal area in response modulation in cat, Neuropsychologia, 12: 213.CrossRefGoogle Scholar
  28. Numan, R., Ward, C. and Clark, J., 1982, Septal lesions and active avoidance performance in rats: effects of differential intra-box cues, Physiol. Behav., 29: 4–89.CrossRefGoogle Scholar
  29. Oades, R. D., 1979, Search and attention: interactions of the hippocampal-septal axis, adrenocortical and gonadal hormones, Neurosci. Biobehav. Rev., 3: 31.CrossRefGoogle Scholar
  30. Oades, R. D., 1981a, Types of memory or attention? Impairments after lesions of the hippocampus and limbic ventral tegmentum, Brain Res. Bull., 7: 221.CrossRefGoogle Scholar
  31. Oades, R. D., 1981b, Impairments of search behavior in rats after haloperidol treatment or hippocampal damage suggest a mesocorticolimbic role in cognition, Biol. Psychol., 12: 77.CrossRefGoogle Scholar
  32. Oades, R. D., 1981c, Dopaminergic agonistic and antagonistic drugs in the ventral tegmentum of rats inhibit and facilitate changes of food search behavior, Neurosci. Lett., 27:77.CrossRefGoogle Scholar
  33. Oades, R. D., 1982, Attention and Schizophrenia: Neurobiological Bases, Pitman Press, London.Google Scholar
  34. Oades, R. D., 1985, The role of noradrenaline in tuning and dopamine in switching between signals in the CNS, Neurosci. Biobehav. Rev., 9: in press.Google Scholar
  35. Oades, R. L. and Isaacson, R. L., 1978, The development of food search behavior by rats: effects of hippocampal damage and haloperidol treatment, Behav. Biol., 24: 327.CrossRefGoogle Scholar
  36. Oades, R. D., Taghzouti, K., Simon, H. and Le Moal, M., 1985, Dopamine-sensitive alternation and collateral behaviour in a Y-maze: effects of d-amphetamine and haloperidol, Psychopharmacol., in press.Google Scholar
  37. Petrides, M. and Iversen, S. D., 1976, Cross-modal matching and the primate frontal cortex, Science, 192; 1023.CrossRefGoogle Scholar
  38. Phillipson, O. T., 1979, Afferent projections to the ventral tegmental area of Tsai and interfasicular nucleus: a horseradish peroxidase study in the rat, J . Comp. Neurol., 187: 117.CrossRefGoogle Scholar
  39. Rea, M. A., Aprison, M. H. and Feiten, D. L., 1982, Catecholamines and serotonin in caudal medulla of rat: a combined neurochemical and histofluorescence study, Brain Res. Bull., 9: 227.CrossRefGoogle Scholar
  40. Robbins, T. W. and Everitt, B. J., 1982, Functional studies of the central catecholamines, Internat. Rev. Neurobiol., 23: 245.Google Scholar
  41. Rosenkilde, C., 1979, Functional heterogeneity of the prefrontal cortex in the monkey, Behav. Neur. Biol., 25: 301.CrossRefGoogle Scholar
  42. Simon, H., 1981, Neurones dopaminergiques A 10 et système frontal J. Physiol.,(Paris), 77: 81.Google Scholar
  43. Solomon, P. R., Crider, A. R., Winkelman, J. W., Turi, A., Kamer, R. M. and Kaplan, L. J., 1981, Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder, Biol. Psychiat., 16; 519.Google Scholar
  44. Sutherland, R. J., 1982, The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex, Neurosci. Biobehav. Rev., 6: 1.CrossRefGoogle Scholar
  45. Taghzouti, K., 1983, L’innervation dopaminergique du noyau accumbens et du septum, étude comportementale, unpubl. Thesis, University of Bordeaux II.Google Scholar
  46. Thomas, G. J., 1979, Comparison of effects of small lesions in postero-dorsal septum on spontaneous and rerun correction (contingently reinforced) alternation in rats, J. Comp. Physiol. Psychol., 93: 685.CrossRefGoogle Scholar
  47. Thornton, E. W. and Evans, J. C., 1982, Role of the habenula nuclei in the selection of behavioral strategies, Physiol. Psychol., 10; 361.Google Scholar
  48. Van den Bercken, J. H. L. and Cools, A. R., 1982, Evidence for a role of the caudate nucleus in the sequential organization of behaviour, Behav. Brain Res., 4: 319.CrossRefGoogle Scholar
  49. Weingartner, H., Burns, S., Diebel, R. and LeWitt, P., 1984., Cognitive impairments in Parkinson’s disease: distinguishing between effort demanding and automatic cognitive processes, Psychiat. Res., 11; 223.CrossRefGoogle Scholar
  50. Weiss, K. R., Friedman, R. and McGregor, R., 1974, Effects of septal lesions on latent inhibition and habituation of the orienting response in rats, Acta Neurobiol. Exp., 34: 4–91.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Robert Oades
    • 1
  • Michael Rea
    • 2
  • Khalid Taghzouti
    • 3
  1. 1.PfungstadtGermany
  2. 2.MPG ForschungsgruppeUniv.-FrauenklinikMünsterGermany
  3. 3.INSERM 259BordeauxFrance

Personalised recommendations