Protein Kinase C and Substrate Protein F1 (47 kD, 4.5 pI): Relation to Synaptic Plasticity and Growth

  • Aryeh Routtenberg
Part of the Advances in Behavioral Biology book series (ABBI, volume 28)


The reactivity of synaptic relationships is regulated by post-translational modification of brain proteins (Routtenberg, 1982a). Information storage would occur when such molecular alterations are persistent. This hypothesis was first advanced following the discovery that training-related activation of the brain of the behaving organism selectively increased the in vitro phosphorylation of particular brain proteins (Routtenberg et al., 1975).


Synaptic Plasticity Dentate Gyrus Dendritic Spine Phorbol Ester Perforant Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acosta-Uriquidi, J., Alkon, D.L., and Neary, J.T., 1984, Ca++-dependent protein kinase injection in a photoreceptor mimics biophysical effects of associative learning, Science, 224: 1254.CrossRefGoogle Scholar
  2. Akers, R.F., Cain, S.T., Gonzales-Mariscal, G., Lovinger, D.M., Nelson, R.B., and Routtenberg, A., 1983, Hypothesis: A 47kD phosphoprotein (F1) serves as molecular trigger for synaptic plasticity, Soc. Neurosci., 9: 1030.Google Scholar
  3. Akers, R., and Routtenberg, A., 1984, Brain protein phosphorylation: Selective action of insulin, Life Sci., 35, 809.CrossRefGoogle Scholar
  4. Akers, R., and Routtenberg, A., 1985, Protein kinase C phosphorylates a 47kD protein directly related to synaptic plasticity, Brain Res., in press.Google Scholar
  5. Ashendel, C.L., Staller, J.M., and Boutwell, R.K., 1983, Protein kinase activity associated with a phorbol ester receptor purified from mouse brain, Cancer Res., 43: 4333.Google Scholar
  6. Bar, P.R., Schotman, P., Gispen, W.H., Lopes da Silva, F.H., and Tielen, A.M., 1980, Changes in synaptic membrane phosphorylation after tetanic stimulation in the dentate area of the rat hippocampal slice, Brain Res., 8: 478.CrossRefGoogle Scholar
  7. Barnes, C.A., 1979, Memory deficits associated with senescence: A behavioral and electrophysiological study, J. Comp. Physiol. Psychol., 93: 74.CrossRefGoogle Scholar
  8. Barrionuevo, G., Kelso, S., and Brown, T.H., 1983, Voltage-clamp analysis of long-term synaptic potentiation, Neurosci. Soc, 9: 103.Google Scholar
  9. Berger, T.W., 1984, Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning, Science, 224: 627.CrossRefGoogle Scholar
  10. Bliss, T.V.P., and Gardner-Medwin, A.R., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of unanaesthetized rabbit following stimulation of the perforant path, J. Physiol, 232: 357.Google Scholar
  11. Bliss, T.V.P., and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path, J. Physiol., 232: 334.Google Scholar
  12. Boynton, A.L., Whitfield, J.F., and Kleine, L.P., 1983, Ca++/phospholipid dependent protein kinase correlates to the ability of transformed liver cells to proliferate in Ca++ deficient medium, Biochem. Biophys. Res. Comm., 115: 383.CrossRefGoogle Scholar
  13. Browning, M., Dunwiddie, M., Bennett, W., Gispen, W.H., and Lynch, G., 1979, Synaptic phosphoproteins: Specific changes after repetitive stimulation of the hippocampal slice, Science, 205: 60.CrossRefGoogle Scholar
  14. Carlin, R.K. and Siekevitz, P., 1983, Plasticity in the central nervous system: Do synapses divide? Proc. Natl. Acad. Sci., 80: 3517.CrossRefGoogle Scholar
  15. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem., 257: 7847.Google Scholar
  16. Desmond, N.L., and Levy, W.B., 1983, Synaptic correlates of associative potentiation/depression: An ultrastructural study in the hippocampus, Brain Res., 265(1): 21.CrossRefGoogle Scholar
  17. Douglas, R.M., and Goddard, G.V., 1975, Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus, Brain Res., 86: 205.CrossRefGoogle Scholar
  18. Dyson, S.E. and Jones, D.G., 1984, Synaptic remodelling during development and maturation: Junction differentiation and splitting as a mechanism for modifying connectivity, Develop. Brain Res., 13: 125.CrossRefGoogle Scholar
  19. Ellis, L., Ratz, F., and Pfenninger, K.H., 1983, Characterization of phosphoproteins of isolated nerve growth cone particles, J. Cell Biol., 97: 242.Google Scholar
  20. Hoch, D.B., Dingledine, R.J., and Wilson, J.E., 1984, Long-term potentiation in the hippocampal slice: Possible involvement of pyruvate dehydrogenase, Brain Res., 28: 1.Google Scholar
  21. Jaken, S., Black, P.H., 1981, Correlation between a specific molecular weight form of plasminogen activator and metabolic activity of 3T3 cells, J. Cell Biol., 90: 721.CrossRefGoogle Scholar
  22. Kandel, E.R., and Schwartz, J.H., 1982, Molecular biology of learning: Modulation of transmitter release, Science, 218: 433.CrossRefGoogle Scholar
  23. Kawahara, Y., Takai, Y., Minakuchi, R., Sano, K., and Nishizuka, Y., 1980, Possible involvement of Ca++—activated, phospholipid-dependent protein kinase in platelet activation. Biochem. J., 88: 913.Google Scholar
  24. Kristjansson, G.I., Zwiers, H., Oestreicher, A.B., and Gispen, W.H., 1982, Evidence that the synaptic phosphoprotein B-50 is localized exclusively in nerve tissue, J. Neurochem., 39: 371.CrossRefGoogle Scholar
  25. Levy, W.B., and Desmond, N.L., 1983, Synaptic correlates of associative potentiation/depression: An ultrastructural study in the hippocampus. Brain Res., 265: 21.CrossRefGoogle Scholar
  26. Llinas, R., 1979, The role of calcium in neuronal function. in: “The Neurosciences: Fourth Study Program.” F.O. Schmitt and F. G. Worden (Eds.), M.I.T. Press, Cambridge, Mass.Google Scholar
  27. Llinas, R., and Sugimori, M., 1982, Calcium conductances in purkinje cell dendrites: Their role in development and integration. in: Prog. in Brain Research., Cuenod, M., Kreutzberg, G.W. and Bloom, F. E. (Eds.)., Vol. 51, Elsevier/North Holland Biomedical Press, B.V., Amsterdam, The Netherlands.Google Scholar
  28. Lomo, T., 1971, Patterns of activation in a monosynaptic cortical pathway: The perforant path input to the dentate area of the hippocampal formation, Exp. Brain Research, 12: 18.Google Scholar
  29. Lovinger, D., Akers, R., Nelson, R., Barnes, C., McNaughton, B., and Routtenberg, A. Protein F1 (47kD,4.5pI) in vitro phosphorylation increased by and directly related to three day growth of long term synaptic enhancement, Soc. Neurosci., 1984, 10, 77.Google Scholar
  30. Lynch, G., and Baudry, M., 1984, The biochemistry of memory: A new and specific hypothesis, Science, 224: 1057.CrossRefGoogle Scholar
  31. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., and Schottler, P., 1983, Intracellular injections of EGTA block induction of hippocampal long-term potentiation, Nature, 305: 719.CrossRefGoogle Scholar
  32. Mishkin, M., 1982, A memory system in monkeys. Phil. Trans. Roy. Soc, Lond., B298: 85.Google Scholar
  33. McNaughton, B.L., 1982, Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms. J. Physiol., 324: 249.Google Scholar
  34. Morgan, D.G., and Routtenberg, A., 1981, Brain pyruvate dehydrogenase: Phosphorylation and enzyme activity altered by a training experience, Science, 214: 470.CrossRefGoogle Scholar
  35. Morris, M.E., Krnjevic, K., and Ropert, N., 1983, Changes in free Ca++ recorded inside hippocampal neurons in response to fimbrial stimulation, Soc. Neurosci., 9: 395.Google Scholar
  36. Moskowitz, N., Schook, W., and Puszkin, S,, 1982, Interaction of brain synaptic vesicles induced by endogenous Ca++—dependent phospholipase A2, Science, 216: 305.CrossRefGoogle Scholar
  37. Nelson, R., Friedman, D., O’Niell, J.B., Lewis, M., and Routtenberg, A., 1983, Protein phosphorylation and opioid receptor gradients in monkey cerebral cortex: phosphorylation state of a 47kD phosphoprotein, Soc. Neurosci., 9: 585.Google Scholar
  38. Nelson, R., Akers, R.F., and Routtenberg, A., 1984, Does protein kinase C activity regulate neural plasticity and its time-dependent processes? Soc. Neurosci., 10: 1180.Google Scholar
  39. Nieto-Sampedro, M., Hoff, S.F., and Cotman, C.W., 1982, Perforated postsynaptic densities: Probable intermediates in synapse turnover, Proc. Natl. Acad. Sci., 79: 5718.CrossRefGoogle Scholar
  40. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion Nature, 308: 693. (a)CrossRefGoogle Scholar
  41. Nishizuka, Y., 1984, Protein kinases in signal transduction, TIBS, 9: 163. (b)Google Scholar
  42. Nishizuka, Y., 1984, Turnover of inositol phospholipids and signal transduction, Science, 225: 1365. (c)CrossRefGoogle Scholar
  43. Nishizuka, Y., Takai, Y., Kishimoto, A., Kikkawa, U., and Kaibuchi, K., 1984, Phospholipid turnover in hormone action, Recent Prog. in Hormone Research, 40: 301.Google Scholar
  44. Oestreicher, A.B., Zwiers, H., Schotman, P., and Gispen, W.H., 1981, Immunohistochemical localization of phosphoprotein (B-50) isolated from rat brain synaptosomal plasma membranes, Brain Res. Bull., 6: 145.CrossRefGoogle Scholar
  45. Oestreicher, A.B., Van Dongen, C.J., Zwiers, H., and Gispen, W.H., 1983, Affinity-purified anti-B-50 antibody: Interference with the function of the phosphoprotein B-50 in synaptic plasma membranes, J. Neurochem., 41: 331.CrossRefGoogle Scholar
  46. Peters, A., and Kaiserman-Abramof, I.R., 1969, The small pyramidal neuron of the rat cerebral cortex, Z. Zellforsch. mikrosk. Anat., 10: 487.CrossRefGoogle Scholar
  47. Rink, T.J., Sanchez, A., and Hallam, T.J., 1983, Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets, Nature, 305: 317.CrossRefGoogle Scholar
  48. Routtenberg, A., 1972, Plasticity recapitulates ontogeny. Talk given at The Fifth Annual Winter Conference on Brain Research at Vail, Colorado.Google Scholar
  49. Routtenberg, A., 1982, Memory formation as a post-translational modification of brain proteins, In: Mechanisms and Models of Neural Plasticity. C.A. Marsden and H. Matthies (Eds.). Proc. VIth Intl. Neurobiol. IBRO Symposium on Learning and Memory, Vol. 9, Raven Press, New York, pp. 17–24.Google Scholar
  50. Routtenberg, A., 1984, Brain Phosphoproteins Kinase C and Protein F1: Protagonists of plasticity in particular pathways. In: Memory Neurobiology. Lynch, G., McGaugh, J., and N. Weinberger (Eds.). The Guilford Press, New York. (a)Google Scholar
  51. Routtenberg, A., 1985, Phosphoprotein regulation of memory formation: Enhancement and control of synaptic plasticity by protein kinase C and Protein F1, New York Acad. Sci., in press. (b)Google Scholar
  52. Routtenberg, A., Ehrlich, Y.H., and Rabjohns, R., 1975, Effect of a training experience on phosphorylation of a specific protein in neocortical and subcortical membrane preparations, Fed. Proc., 34: 293.Google Scholar
  53. Routtenberg, A., Morgan, D.G., Conway, R., Schmidt, M.J., and Ghetti, B., 1981, Human brain protein phosphorylation in vitro: Cyclic AMP stimulation of electrophoretically-separated substrates, Brain Res., 222: 323.CrossRefGoogle Scholar
  54. Routtenberg, A., Lovinger, D., Cain, S., Akers, R., and Steward, O., 1983, Effects of long-term potentiation of perforant path synapses in the intact hippocampus on in vitro phosphorylation of a 47kD protein (F1), Fed. Proc., 42: 755.Google Scholar
  55. Routtenberg, A., Lovinger, D., and Steward, O., 1985, Selective increase in the phosphorylation of a 47kD protein (F1) directly related to long-term potentiation, Behav. Neural Biol., 43: 3.CrossRefGoogle Scholar
  56. Sorenson, R.G., Kleine, L.P., and Mahler, H.R., 1981, Pre-synaptic localization of phosphoprotein B-50, Brain Res. Bull., 7: 56.Google Scholar
  57. Takai, Y., Kishimoto, A., Iwasa, Y., Rawahara, Y., Mori, T., Nishizuka, Y., 1977, Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids, J. Biol. Chem., 254: 3692.Google Scholar
  58. Tarrant, S.B., and Routtenberg, A., 1977, The synaptic spinule in the dendritic spine: Electron microscopic study of the hippocampal dentate gyrus. Tissue & Cell, 9: 461.CrossRefGoogle Scholar
  59. Tarrant, S.B., and Routtenberg, A., 1979, Postsynaptic membrane and spine apparatus: Proximity in dendritic spines. Neuroscience Letters, 11: 289.CrossRefGoogle Scholar
  60. Taube, J.S., and Schwartzkrain, P., 1983, Intracellular tests of possible LTP mechanisms. Soc. Neurosci., 9: 287.Google Scholar
  61. Tielen, A.M., De Graan, P.N.E., Mollevanger, W.J., Lopes da Silva, F. H., and Gispen, W. H., 1983, Quantitative relationship between post-tetanic biochemical and electrophysiological changes in rat hippocampal slices, Brain Res., 277: 189.CrossRefGoogle Scholar
  62. Van Harreveld, A., and Fifkova, E., 1975, Swelling of dendritic spines in the fascia dentata after stimulation of the perforant path fibers as a mechanism of post-tetanic potentiation, Exp. Neurol., 49: 736.CrossRefGoogle Scholar
  63. Westrum, L.E., and Blackstad, T.W., 1962, An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior CA 1) with particular emphasis on synaptology, J. comp. Neurol., 119: 281.CrossRefGoogle Scholar
  64. Wilson, R.C., Levy, W.B., and Steward, O., 1981, Changes in translation of synaptic excitation to dentate granule cell discharge accompanying long-term potentiation. II. An evaluation of mechanisms utilizing dentate gyrus dually innervated by surviving and sprouted crossed temporodentate inputs. J. Neurophys., 46: 324.Google Scholar
  65. Zwiers, H., Jolies, J., Aloyo, V.J., Oestreicher, A.B., and Gispen, W.H., 1982, ACTH and synaptic membrane phosphorylation in rat brain. In: Brain phosphoproteins: Characterization and function. W.H. Gispen and A. Routtenberg (Eds.). Prog. in Br. Res., Vol. 56, Elsevier/North Holland Biomedical Press, Amsterdam, The Netherlands, pp. 405–417.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Aryeh Routtenberg
    • 1
  1. 1.Cresap Neuroscience LaboratoryNorthwestern UniversityEvanstonUSA

Personalised recommendations