Role of Serotonin and cAMP on Short-Term Plastic Changes Underlying Simple Forms of Learning Process

  • M. Brunelli
  • G. Demontis
  • G. Traina
Part of the Advances in Behavioral Biology book series (ABBI, volume 28)


In recent years, invertebrate nervous systems have proved to be experimentally advantageous preparations for studying the cellular and molecular mechanisms that underlie learning, because the neuronal networks of invertebrate ganglia are made up by cells large enough to be analysed by different methodologies. Moreover, it is possible to test the effects on neuronal functions of a variety of molecules by injecting them into the neuronal somata.


Sensory Neuron Behavioral Sensitization Mechanosensory Neuron Repetitive Discharge Retzius Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagnoli P., Brunelli M., Magni F. and Pellegrino M., 1975, The neuron of the fast conducting system in Hirudo m.: identification and synaptic connection with primary afferent neurons, Arch. Ital.Biol., 113:21Google Scholar
  2. Belardetti F., Biondi C., Colombaioni L., Brunelli M., Trevisani A., 1982, Role of serotonin and cAMP on facilitation of the fast conducting system activity in the leech Hirudo m., Brain Res., 246:89CrossRefGoogle Scholar
  3. Belardetti F., Biondi C., Brunelli M., Fabri M. and Trevisani A., 1983, Heterosynaptic facilitation and behavioral sensitization are inhibited by lowering endogenous cAMP in Aplysia, Brain Res., 288:95CrossRefGoogle Scholar
  4. Belardetti F., Brunelli M., Demontis G. and Sonetti D., 1984, Serotonin and Retzius cell depress the hyperpolarization following impulses of leech touch cell, Brain Res., 300:91CrossRefGoogle Scholar
  5. Bernier L., Castellucci V.F., Kandel E.R., Schwartz J.H., 1982, Facilitatory transmitter cause a selective and prolonged increase in Adenosine 3′-5′ monophosphate in sensory neuron mediating gill and syphon withdrawal reflex in Aplysia, J. Neuroscience, 2:1682Google Scholar
  6. Biondi C., Belardetti F., Brunelli M., Portolan A. and Trevisani A., 1982, Increased synthesis of cAMP and short-term plastic changes in the segsegmental ganglia of the leech, Hirudo m., Cell.Mol.Neurobiol., 2:81CrossRefGoogle Scholar
  7. Brunelli M., Castellucci V.F. and Kandel E.R., 1976, Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cAMP, Science, 194:1178CrossRefGoogle Scholar
  8. Castellucci V.F., Kandel E.R., Schwartz J.H., Wilson F.D., Nairn A.C., and Greengard P., 1980, Intracellular injection of the catalytic subunit of cAMP dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia, Proc.Natl. Acad.Sci.USA, 77:7492CrossRefGoogle Scholar
  9. Castellucci V.F., Nairn A., Greengard P., Schwartz J.H. and Kandel E.R., 1982, Inhibitor of adenosine 3’,5’ monophosphate-dependent protein kinase blocks presynaptic facilitation in Aplysia, J.Neurosci., 2:1673Google Scholar
  10. Castellucci V.F., Bernier L., Schwartz J.H. and Kandel E.R., 1983, Persistent activation of adenylate cyclase underlies the time course of shortterm sensitization in Aplysia, Soc.Neurosci.Abstr., 9:169.Google Scholar
  11. De Camilli P. and Navone F., 1984, Immunocytochemistry as a tool in the study of neurotransmitter actions. Trends in Pharmacol.Sci., 7:300CrossRefGoogle Scholar
  12. Eckstein F., Cassel D., Levkovitz H., Lowe M., Selinger Z., 1979, Guanosine 5’-O-(2-Thiodiphosphate) an inhibitor of adenylate cyclase stimulation by guanine nucletides and fluoride ions, J. Biol. Chem., 254:982Google Scholar
  13. Hawkins R.D., Castellucci V.F., Kandel E.R., 1981, Interneurons involved in mediation and modulation of gill-withdrawal reflex in Aplysia.II Identified neurons produce heterosynaptic facilitation contributing to behavioral sensitization, J. Neurophysiol., 45:315Google Scholar
  14. Hawkins R.D., Abrams T.W., Carew T.J., Kandel E.R., 1983, A cellular mechanism of classical conditioning in Aplysia: activity-dependent amplification of presynaptic facilitation, Science, 219:397CrossRefGoogle Scholar
  15. Kandel E.R., Brunelli M., Byrne J. and Castellucci V.F., 1976, A common presynaptic locus for the synaptic changes underlying short-term habituation and sensitization of the gill withdrawal reflex in Aplysia, in: “Cold Spring Harbor Laboratory Symposia on Quant.Biol.” vol.XL Editor, Cold Spring Harbor Laboratory.Google Scholar
  16. Kandel E.R., Abrams T., Bernier L., Carew T.J., Hawkins R.D. and Schwartz J.H. 1983, Classical conditioning and sensitization share common aspects of the same molecular cascade in Aplysia, in: “Cold Spring Harbor Symposia on Quantitative Biology” vol. XLVIII, Editor Cold Spring HarborGoogle Scholar
  17. Klein M. and Kandel E.R., 1978, Modulation of voltage Ca current: mechanism for behavioral sensitization in Aplysia californica, Proc.Natl.Acad. Sci.USA, 75:3512CrossRefGoogle Scholar
  18. Klein M. and Kandel E.R., 1981, Mechanism of Ca current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia, Proc.Natl.Acad.Sci.Usa, 77:6912CrossRefGoogle Scholar
  19. Kristan W.B., 1983, The neurobiology of swimming in the leech, Trends in Neuroscience, 6:84CrossRefGoogle Scholar
  20. Siegelbaum S.A., Camardo J.S., Kandel E.R., 1982, Serotonin and cAMP close single K channel in Aplysia sensory neurons, Nature, 299:413CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Brunelli
    • 1
    • 2
  • G. Demontis
    • 1
    • 2
  • G. Traina
    • 1
    • 2
  1. 1.Istituto di FisiologiaUniversità di PisaPisaItaly
  2. 2.Istituto di Neurofisiologia CNRPisaItaly

Personalised recommendations