Brain Plasticity, Learning and Memory: Historical Background and Conceptual Perspectives

  • Bruno Will
  • Pierre Schmitt
  • John Dalrymple-Alford
Part of the Advances in Behavioral Biology book series (ABBI, volume 28)


The relationship between brain plasticity, learning and memory has in recent years become a topic of great interest in the neurobiological sciences. Given the number of different approaches to this field, there is a clear need to bring together a body of data that derive from such approaches and to examine some of the concepts that are currently employed. In this introductory chapter we shall discuss some theoretical considerations of the concept of brain plasticity in its relationship to learning and memory. However, as the interest in the existence of a relationship between brain function and various facets of learning and memory is not new, it may be of value to take a brisk, selective look at the development of this general field from a historical perspective, and to compare past and present trends.


Brain Size Brain Plasticity Adaptive Plasticity Song Repertoire Lateral Motor Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alm, P., Björklund, A., Owmann, C., and Thorbert G., 1979, Tyrosine hydroxylase and DOPA-decarboxylase activities in the guinea-pig uterus: further evidence for functional adrenergic denervation in association with pregnancy, Neurosci., 4:145.CrossRefGoogle Scholar
  2. Bethe, A., 1930, Plastizität und Zentrenlehre, Handb. Norm. Path. Physiol., 15:1175.Google Scholar
  3. Bleier, R., 1969, Retrograde transsynaptic cellular degeneration in mammillary and ventral tegmental nuclei following limbic decortication in rabbits of various ages, Brain Res., 15:365.CrossRefGoogle Scholar
  4. Bloch, V., 1970, Facts and hypotheses concerning memory consolidation processes, Brain Res., 24:561.CrossRefGoogle Scholar
  5. Bonnet, C., 1781, “Oeuvres d’Histoire Naturelle et de Philosophie”, Fauche, Neuchâtel.Google Scholar
  6. Brandt, A., 1867, Sur le rapport du poids du cerveau à celui du corps chez différents animaux, in: “Bulletin de la Société Impériale des Naturalistes de Moscou”, 40:525.Google Scholar
  7. Brown, C.P., 1971, Cholinergic activity in rats following enriched stimulation and training: direction and duration of effects, J. Comp. Physiol. Psychol., 75:408.CrossRefGoogle Scholar
  8. Brown, M.C., 1984, Sprouting of motor nerves in adult muscles: a recapitulation of ontogeny, Trends Neurosci., 7:10.CrossRefGoogle Scholar
  9. Buell, S.J., and Coleman, P.D., 1981, Quantitative evidence for selective dendritic growth in normal human aging but not senile dementia, Brain Res., 214:23.CrossRefGoogle Scholar
  10. Changeux, J.P., “L’homme neuronal”, Fayard, Paris.Google Scholar
  11. Clark, E., and Dewhurst, K., 1972, “An Illustrated History of Brain Function”, University of California Press, Berkeley.Google Scholar
  12. Cotman, C.W. and Nieto-Sampedro, M., 1982, Brain function, synapse renewal and plasticity, Ann. Rev. Psychol., 33:371.CrossRefGoogle Scholar
  13. Cotman, C.W., Nieto-Sampedro, M., and Harris, E.W., 1981, Synapse replacement in the nervous system of adult vertebrates, Physiol. Rev., 61:684.Google Scholar
  14. Cuvier, G., 1800, “Leçons d’anatomie comparée”, vol. 2, Baudoin, Paris.Google Scholar
  15. Cuvier, G., 1822, “Recherches sur les ossements fossiles”, vol. 3, Dufour et d’Ocagne, Paris.Google Scholar
  16. DeKoski, S.T., Scheff, S.W., and Cotman, C.W., 1984, Elevated corticosterone levels: A possible cause of reduced axon sprouting in aged animals, Neuroendocrinol., 38:33.CrossRefGoogle Scholar
  17. Diamond, J., Cooper, E., Turner, C., and MacIntyre, L., 1976, Trophic regulation of nerve sprouting, Science, 193:371.CrossRefGoogle Scholar
  18. Duffy, F.H., Snodgrass, S.R., Burchfiel, J.L., and Conway, J.L., 1976, Bicuculline reversal of deprivation amblyopia in the cat, Nature, 260:256.CrossRefGoogle Scholar
  19. Finger, S., and Stein, D.G., 1982, “Brain Damage and Recovery”, Academic Press, New York.Google Scholar
  20. Gall, C., and Lynch, G., 1978, Rapid axon sprouting in the neonatal rat hippocampus, Brain Res., 153:357.CrossRefGoogle Scholar
  21. Goldwitz, D., and Cotman, C.W., 1980, Do neurotrophic interactions control synapse formation in the adult rat brain ? Brain Res., 181:325.CrossRefGoogle Scholar
  22. Greenough W.T., 1976, Enduring brain effects of differential experience and training, in: “Neural mechanisms of learning and memory” M.R. Rosenzweig and E.L. Bennett, eds., M.I.T. Press, Cambridge Mass.Google Scholar
  23. Greenwald, I., and Martinez-Arias, A., 1984, Programmed cell death in invertebrates, Trends Neurosci., 7:179.CrossRefGoogle Scholar
  24. Hamburger, V., 1975, Cell death in the development of the lateral motor column of the chick embryo, J. Comp. Neurol., 160:535.CrossRefGoogle Scholar
  25. Hinde, R.A., and Stevenson-Hinde, J., 1973, “Constraints on learning”, Academic Press, London.Google Scholar
  26. Isaacson, R.L., 1975, The myth of recovery from early brain damage, in: “Aberrant development in infancy”, N.R. Ellis, ed., Erlbaum, Potomac.Google Scholar
  27. John, E.R., 1972, Switchboard versus statistical theories of learning and memory, Science, 177:850.CrossRefGoogle Scholar
  28. Kelche, C., and Will, B., 1982, Effects of postoperative environments following dorsal hippocampal lesions on dendritic branching and spines in rat occipital cortex, Brain Res., 245:107.CrossRefGoogle Scholar
  29. Konorski, J., 1961, The physiological approach to the problem of recent memory, in: “Brain Mechanisms and Learning”, A. Fessard, ed., Balkwell, Oxford.Google Scholar
  30. Lewis, N.E., 1979, Psychology of active and inactive memory, Psychol. Bull., 86:1054.CrossRefGoogle Scholar
  31. Land, P.W., and Lund, R.D., 1979, Development of the rat’s uncrossed retinotectal pathway and its relation to plasticity studies, Science, 205:698.CrossRefGoogle Scholar
  32. Lund, R.D., 1978, “Development and Plasticity of the Brain”, Oxford University Press, New York.Google Scholar
  33. Lund, R.D., Cunningham, T.J., and Lund, J.S., 1973, Modified optic projections after unilateral eye removal in young rats, Brain Behav. Evol., 8:51.CrossRefGoogle Scholar
  34. Lynch, G., and Gall, C., 1979, Organization and reorganization in the central nervous system: Evolving concepts of brain plasticity, in: “Human Growth”, vol.3, F. Falkner and J. M. Tanner, eds., Plenum Publishing Corporation, New York.Google Scholar
  35. Magendie, F., 1831, “An elementary compendium of physiology”, E. Milligan, trans., J. Carfrae, Edinburgh.Google Scholar
  36. Mariani, J., 1983, Elimination of synapses during the development of the central nervous system, Prog. Brain Res., 58:383.CrossRefGoogle Scholar
  37. McCormick, D.A., and Thompson, R.F., 1984, Cerebellum: Essential involvement in the classically conditioned eyelid response, Science, 223:299.CrossRefGoogle Scholar
  38. Nottebohm, F., 1981, Laterality, seasons and space govern the learning of motor skill, Trends Neurosci., 4:104.CrossRefGoogle Scholar
  39. Paillard, J., 1976, Réflexions sur l’usage du concept de plasticité en neurobiologie, J. Psychol.(Paris), 1:33.Google Scholar
  40. Passingham, R.E., Perry, V.H., and Wilkinson, F., 1983, The long-term effects of removal of sensorimotor cortex in infant and adult rhesus monkeys, Brain, 106:675.CrossRefGoogle Scholar
  41. Paton, J.A., O’Loughlin, B., and Nottebohm, F., 1984, Neurogenesis of interneurons in a adult canary forebrain, Soc. Neurosci. Abstracts, 10:664.Google Scholar
  42. Perry, V.H., and Cowey, A., 1982, A sensitive period for ganglion cell degeneration and the formation of aberrant retinofugal connections following tectal lesions in rats, Neurosci., 7:583.CrossRefGoogle Scholar
  43. Prendergast, J., and Stelzner, D.J., 1976, Changes in the magnocellular portion of the red nucleus following thoracic hemisection in the neonatal and adult rat, J. Comp. Neurol., 166:163.CrossRefGoogle Scholar
  44. Ramòn Y Cajal, S., 1894, La fine structure des centres nerveux, Proc. of the Royal Soc. of London, 55:444.CrossRefGoogle Scholar
  45. Ramòn Y Cajal, S., 1928, “Studies on Degeneration and Regeneration of the Nervous System”, R.M.May, trans., Oxford University Press, Oxford.Google Scholar
  46. Rosenzweig, M.R., 1979, Responsiveness of Brain Size to Individual Experience: Behavioral and Evolutionary Implications, in: “Development and Evolution of Brain Size”, M.E. Hahn, C. Jensen, and B.C. Dudek, eds., Academic Press, New York.Google Scholar
  47. Rosenzweig, M.R. and Bennett, E.L., 1977, Effects of environmental enrichment or impoverishment on learning and on brain values in rodents, in: “Genetics, Environment and Intelligence”, A. Oliverio, ed., Elsevier, Amsterdam.Google Scholar
  48. Rosenzweig, M.R., and Bennett, E.L., 1978, Experiential influences on brain anatomy and brain chemistry in rodents, in: “Early Influences: Studies on the Development of Behavior and the Nervous System”, G. Gottlieb, ed., Academic Press, New York.Google Scholar
  49. Rosenzweig, M.R., and Bennett, E.L., 1980, How plastic is the nervous system ?, in: “The comprehensive handbook of behavioral medicine”, vol.1, J. Fergusson and C. Taylor, eds., Spectrum Publications, New-York.Google Scholar
  50. Rutledge, L.T., 1976, Synaptogenesis: Effects of synaptic use, in: “Neural Mechanisms of Learning and Memory”, M.R. Rosenzweig and E.L. Bennett, eds., M.I.T. Press, London.Google Scholar
  51. Sahakian, W.S., 1970, “Learning: Systems, Models and Theories”, Rand McNally College Publishing Company, Chicago.Google Scholar
  52. Schneider, G.E., 1973, Early lesions of superior colliculus: Factors affecting the formation of abnormal retinal projections, Brain Behav. Evol., 8:73.CrossRefGoogle Scholar
  53. Schneider, G.E., 1979, Is it really better to have your brain lesion early? A revision of the “Kennard principle”, Neuropsychologia, 17:557.CrossRefGoogle Scholar
  54. Seligman, M.E.P., and Hager, J.L., 1972, “Biological boundaries of learning”, Appleton Century Crofts, New-York.Google Scholar
  55. Snell, O., 1892, Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten, Archiv für Psychiatrie und Nervenkrankheiten, 23:436.CrossRefGoogle Scholar
  56. Sömmerring, S. Th., 1785, “Uber die Körperliche Verschiedenheit des Negers vom Europäer”, Barrentrapp Sohn und Wenner, Frankfurt und Mainz.Google Scholar
  57. Sömmerring, S. Th., 1791, “Vom Baue des Menschlichen Körpers”, Barrentrapp Sohn und Wenner, Frankfurt und Mainz.Google Scholar
  58. Spaer, N.E., 1980, “L’évolution des souvenirs: Oubli et mémoire”, Medsi, Paris.Google Scholar
  59. Steele Russell, I., 1979, Brain size and intelligence: a comparative perspective, in: Brain, Behaviour and Evolution, D.A. Oakley and H.C. Plotkin, eds., Methuen, London.Google Scholar
  60. Ungerer, A., Pallaud, B., Ropartz, Ph., and Will, B., 1977, Répercussions à court et moyen termes d’un enrichissement physique de l’environnement chez le rat: Comportement explorateur et préférence pour un type d’environnement, Biol. Behav., 2:159.Google Scholar
  61. Uylings, H.B.M., Kuypers, K., and Veltman, W.A.M., 1978, Environmental influences on the neocortex in later life, in: “Maturation of the Nervous System, Progress in Brain Research”, M.A. Corner et al., eds., Elsevier, North Holland.Google Scholar
  62. Wernig, A., and Stöver, H., 1979, Sprouting and repression of the nerve at the frog neuromuscular junction, Pfluegers Arch., 379:R38.Google Scholar
  63. Will, B., and Eclancher, F., 1984, Early brain damage and early environment, in: “Early Brain Damage”, vol.2, S. Finger and C. R. Almli, eds., Academic Press, New York.Google Scholar
  64. Yeo, C.H., Hardiraan, M.L., and Glickstein, M., 1984, Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit, Behav. Brain Res., 13:261.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Bruno Will
    • 1
  • Pierre Schmitt
    • 2
  • John Dalrymple-Alford
    • 1
  1. 1.Laboratoire de Neurobiologie des ComportementsUniversité Louis PasteurStrasbourgFrance
  2. 2.Laboratoire de NeurophysiologieCentre de Neurochimie du CNRSStrasbourgFrance

Personalised recommendations