Circular Dichroism (CD) and Magnetic Circular Dichroism (MCD)

  • John R. Wright
  • Wayne A. Hendrickson
  • Shigemasa Osaki
  • Gordon T. James
Part of the Biochemistry of the Elements book series (BOTE, volume 5)


For reasons given in Chapter 7, ultraviolet and visible light absorption measurements offer very little information of a selective nature. Two other methods which use light in this wavelength range, optical rotatory dispersion (ORD) and circular dichroism (CD), provide evidence of a structural/stereochemical nature, although to gain such insight it is necessary to compare the results from ORD and CD with information from other methods. When the sample under investigation is subjected to an intense magnetic field (-50 kG) the phenomena observed in ORD and CD are extended, respectively, to magnetic optical rotatory dispersion (MORD) and magnetic circular dichroism (MCD). This chapter is concerned mostly with MCD. However, before attempting a discussion of MCD it will be necessary to first present a brief account of the basic characteristics of the related methods (Djerassi et al., 1971; Stephens, 1974).


Circular Dichroism Magnetic Circular Dichroism Cotton Effect Blue Copper Protein Intense Magnetic Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barth, G., Bunnenberg, E., and Djerassi, C., 1972. Magnetic circular dichroism studies. XIX. Determination of the tyrosine: tryptophan ratios in proteins, Anal. Biochem. 48:471.PubMedCrossRefGoogle Scholar
  2. Becker, J. W., Reeke, G. N., Wang, J. L., Cunningham, B. A., and Edelman, G. M., 1975. The covalent and three-dimensional structure of concanavalin-A, III. Structure of the monomer and its interactions with metals and saccharides, J. Biol. Chem. 250:1513.PubMedGoogle Scholar
  3. Colman, P. M., Freeman, H. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M., and Yenkatappa, M. P., 1978. X-ray crystal structure of plastocyanin at 2.7 angstrom resolution, Nature (London) 272:319.CrossRefGoogle Scholar
  4. Djerassi, C., 1960. Optical Rotatory Dispersion: Applications to Organic Chemistry ,McGraw-Hill, New York.Google Scholar
  5. Djerassi, C., Bunnenberg, E., and Elder, D. L., 1971. Organic chemical applications of magnetic circular dichroism, Pure Appl. Chem. 25:57.CrossRefGoogle Scholar
  6. Dolinger, P. M., Kielczewski, M., Trudel, J. R., Barth, G., Linder, R. E., Bunnenberg, E., and Djerassi, C., 1974. Magnetic circular dichroism studies XXV. A preliminary investigation of microsomal cytochromes, Proc. Natl. Acad. Sci. U.S.A. 71:399.PubMedCrossRefGoogle Scholar
  7. Faraday, M., 1846, Phil. Trans. Roy. Soc. London 3:1.Google Scholar
  8. Hatano, M., and Nozawa, T., 1978. Magnetic circular dichroism approach to hemoprotein analysis, Adv. Biophys. 11:95.PubMedGoogle Scholar
  9. Holm, R. H., and Ibers, J. A., 1977. Synthetic analogs of the active sites of iron-sulfur proteins, in Iron-Sulfur Proteins ,Vol. 3 (W. Lovenberg, ed.), Academic Press, New York, pp. 205–281.Google Scholar
  10. Holmquist, B., and Vallee, B. L., 1973. Tryptophan quantitation by magnetic circular dichroism in native and modified proteins, Biochemistry 12:4409.PubMedCrossRefGoogle Scholar
  11. Holmquist, B., and Vallee, B. L., 1978. Magnetic circular dichroism, Methods in Enzy-mology ,49:149.CrossRefGoogle Scholar
  12. Ivanetich, K. M., Movsowitz, C., and Moore, M. R., 1984. Rapid semiquantitative measurement of total porphyrins in urine and feces by magnetic circular dichroism, Clin. Chem. 30:391.PubMedGoogle Scholar
  13. Finder. R. E., Records, R., Barth, G., Bunnenberg, E., Djerassi, C., Hedlung, B. E., Rosenberg, A., Benson, E. S., Seamans, L., and Moscowitz, A., 1978. Magnetic circular dichroism studies. Part LIV. Partial reduction of aquomethemoglobin on a Sephadex G-25 column as detected by magnetic circular dichroism spectroscopy and revised extinction coefficients for aquomethemoglobin, Anal. Biochem. 90:474.CrossRefGoogle Scholar
  14. Moffitt, W., Woodward, R. B., Moscowitz, A., Klyne, W., and Djerassi, C., 1961. Structure and the optical rotatory dispersion of saturated ketones, J. Am. Chem. Soc. 83:4013.CrossRefGoogle Scholar
  15. Mori. W., Yamauchi, O., Nakao, Y., and Nakahara, A., 1975. Spectroscopic studies on the active site of Sepioteuthis lessoniana hemocyanin, Biochem. Biophys. Res. Com-mun. 66:725.CrossRefGoogle Scholar
  16. Nozawa, T., Shimizu, T., Hatano, M., Shimada, H., Iizuka, T., and Ishimura, Y., 1978. Magnetic circular dichroism of Pseudomonas putida cytochrome P-450 in near infrared region, Biochim. Biophys. Acta 534:285.PubMedGoogle Scholar
  17. Palmer, G., Babcock, G. T., and Vickery, L. E., 1976. A model for cytochrome oxidase, Proc. Natl. Acad. Sci. U.S.A. 73:2206.PubMedCrossRefGoogle Scholar
  18. Richardson, C. E., and Behnke, W. D., 1978. Physical studies of lanthanide binding to concanavalin-A, Biochim. Biophys. Acta 534:267.PubMedGoogle Scholar
  19. Rivoal, J. C., Briat, B., Cammack, R., Hall, D. O., Rao, K. K., Douglas, I. M., and Thomson, A. J., 1977. The low temperature magnetic circular dichroism spectra of iron-sulfur proteins. I. Oxidized rubredoxins, Biochim. Biophys. Acta 493:122.PubMedGoogle Scholar
  20. Schreiner, A. F., Gunter, J. D., Hamm, D. J., Jones, I. D., and White, R. C., 1978. Magnetic CD spectra of chlorophylls, chlorophyllides, and zinc(II) and copper(II) pheophytins and pheophorbides, Inorg. Chim. Acta 26:151.CrossRefGoogle Scholar
  21. Serber, R., 1932. Phys. Rev. 41:489.CrossRefGoogle Scholar
  22. Shimizu, T., Nozawa, T., Hatano, M., Imai, Y., and Sato, R., 1975. Magnetic circular dichroism studies of hepatic microsomal cytochrome P-450, Biochemistry 14:4172.PubMedCrossRefGoogle Scholar
  23. Solomon, E. I., Hare, J. W., and Gray, H. B., 1976. Spectroscopic studies and a structural model for blue copper centers in proteins, Proc. Natl. Acad. Sci. U.S.A. 73:1389.PubMedCrossRefGoogle Scholar
  24. Solomon, E. I., Hare, J. W., Dooley, D. M., Dawson, J. H., Stephens, P. J., and Gray, H. B., 1980. Spectroscopic studies of stellacyanin, plastocyanin and azurin. Electronic structure of the blue copper sites, J. Am. Chem. Soc. 102:168.CrossRefGoogle Scholar
  25. Stephens, P. J., 1974. Magnetic circular dichroism, Annu. Rev. Phys. Chem. 25:201.CrossRefGoogle Scholar
  26. Stephens, P. J., Thomson, A. J., Dunn, J. B. R., Keiderling, T. A., Rawlings, J., Rao, K. K., and Hall, D. O., 1978a. Circular dichroism and magnetic circular dichroism of iron-sulfur proteins, Biochemistry 17:4770.PubMedCrossRefGoogle Scholar
  27. Stephens, P. J., Thomson, A. J., Keiderling, T. A., Rawlings, J., Rao, K. K., and Hall, D. O., 1978b. Cluster characterization in iron-sulfur proteins by magnetic circular dichroism, Proc. Natl. Acad. Sci. U.S.A. 75:5273.PubMedCrossRefGoogle Scholar
  28. Sutherland, J. C, Duval, J. F., and Griffin, K. P., 1978. Magnetic circular dichroism of netropsin and natural circular dichroism of the netropsin-DNA complex, Biochemistry 17:5088.PubMedCrossRefGoogle Scholar
  29. Thomson, A. J., Commack, R., Hall, D. O., Rao, K. K., Brait, B., Rivoal, J. C., and Badoz, J., 1977. The low temperature magnetic circular dichroism spectra of iron-sulfur proteins; II. Two iron ferredoxins, Biochim. Biophys. Acta 493:132.PubMedGoogle Scholar
  30. Ulmer, D. D., Holmquist, B., and Vallee, B. L., 1973. Magnetic circular dichroism of non-heme iron proteins, Biochem. Biophys. Res. Commun. 51:1054.PubMedCrossRefGoogle Scholar
  31. Vickery, L., Nozawa, T., and Sauer, K., 1976. Magnetic circular dichroism studies of myoglobin complexes-Correlations with heme spin state and axial ligation, J. Am. Chem. Soc. 98:343.PubMedCrossRefGoogle Scholar
  32. Weser, U., Bunnenberg, E., Commack, R., Djerassi, C., Flohe, L., Thomas, G., and Voelter, W., 1971. A study on purified bovine erythrocuprein, Biochim. Biophys. Acta 243:203.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Wright
    • 1
  • Wayne A. Hendrickson
    • 2
  • Shigemasa Osaki
    • 3
  • Gordon T. James
    • 4
  1. 1.Southeastern Oklahoma State UniversityDurantUSA
  2. 2.Columbia UniversityNew YorkUSA
  3. 3.Hybritech, Inc.San DiegoUSA
  4. 4.Health Sciences CenterUniversity of ColoradoDenverUSA

Personalised recommendations