Laser Applications: Resonance Raman (RR) Spectroscopy and Related Methods

  • John R. Wright
  • Wayne A. Hendrickson
  • Shigemasa Osaki
  • Gordon T. James
Part of the Biochemistry of the Elements book series (BOTE, volume 5)


An application of laser technology to the detection of quadrupole resonance phenomena was described in Chapter 3 (see Section 3.4.2). The present chapter explores resonance Raman (RR) spectroscopy. It should be noted that RR spectroscopy is but one of many potential applications involving lasers (Brewer and Mooradian, 1974; Bradersen, 1979; Morris and Wallan, 1979; Butler et al., 1978; Omenotto, 1979; Steinfeld, 1978; Horrocks et al., 1980; Parker, 1983); yet it does have the distinction of providing information of a relatively selective nature. Also, it is the one biological application of lasers which has been used sufficiently to justify its inclusion as a whole chapter. Raman and RR spectroscopy are relatively old methods with biological applications extending back to the 1930s. The laser improvements are most recent.


Raman Spectrum Raman Spectroscopy Vibrational Mode Vibrational Level Laser Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adar, F., and Erecinska, M., 1978. Resonance Raman spectra of whole mitochondria, Biochemistry 17:5484.PubMedCrossRefGoogle Scholar
  2. Barrow, G. M., 1962. Introduction to Molecular Spectroscopy ,McGraw-Hill, New York.Google Scholar
  3. Bertoluzza, A., Bonora, S., Fini, G., Morelli, M. A., and Simoni, R., 1983. Phospho-lipid-protein molecular interactions in relation to immunological processes, J. Raman Spectrosc. 14:393.Google Scholar
  4. Bote, M. A. L., and Montero, S., 1984. Raman tensor tables. MX3 molecules, J. Raman Spectrosc. 15:4.CrossRefGoogle Scholar
  5. Braiman, M., and Mathies, R., 1982. Resonance raman spectroscopy of bacteriorhodopsin’s primary photoproduct: Evidence for a distorted 13-cis retinal chromophore, Proc. Natl. Acad. Sci. U.S.A. 79:403.PubMedCrossRefGoogle Scholar
  6. Brewer, R. G., and Mooradian, A., 1974. Laser spectroscopy, Proceedings of an international conference held in Vail, Colorado, June 25’29, 1973 ,Plenum Press, New York.Google Scholar
  7. Brodersen, S., 1979. High-resolution rotation-vibration Raman spectroscopy, in Topics in Current Physics: Raman Spectroscopy of Gases and Liquids ,Vol. 11 (A. Weber, ed.), Springer-Verlag, New York, pp. 7–69.CrossRefGoogle Scholar
  8. Bullock, P. A., and Myer, Y. P., 1978. Circular dichroism and resonance Raman studies of cytochrome b from E. coli.. Biochemistry 17:3084.PubMedCrossRefGoogle Scholar
  9. Butler, J. F., Nill, K. W., Mantz, A. W., and Eng, R. S., 1978. Application of tunable-diode-laser IR spectroscopy to chemical analysis, ACS Symposium Series ,Vol. 85, New Applications of Lasers to Chemistry (G. M. Hieftje, ed.), 9American Chemical Society Publications, Washington, D.C., pp. 12–23.CrossRefGoogle Scholar
  10. Carey, P. R., 1978. Resonance Raman spectroscopy in biochemistry and biology. Quart. Rev. Biophys. 11:309.CrossRefGoogle Scholar
  11. Chinsky, L., Hubert-Habart, M., Laigle, A., and Turpin, P. Y., 1983. Carbonyl stretching vibrations of uracil studied by oxygen-18 isotopic substitutions with UV resonance Raman spectroscopy, J. Raman Spectrosc. 14:322.CrossRefGoogle Scholar
  12. Collman, J. P., Sorrell, T. N., and Hoffman, B. M., 1975. Models for cytochrome P-450, J. Am. Chem. Soc. 97:913.PubMedCrossRefGoogle Scholar
  13. Cotton, F. A., 1967. Chemical Applications of Group Theory ,John Wiley &Sons, New York.Google Scholar
  14. Desbois, A., Lutz, M., and Banerjee, R., 1978. Low-frequency vibrations in resonance Raman spectra of myoglobin: Iron-ligand and iron-nitrogen modes, C.R. Acad. Sci., Ser. D. 287:349.Google Scholar
  15. Dhamelincourt, P., Wallart, F., Leclercq, M., Nguyen, A. T., and Landon, D. O., 1979. Laser Raman molecular microprobe (MOLE), Anal. Chem. 5L414A, 420A.Google Scholar
  16. Duff, L. L., Appelman, E. H., Shriver, D. F., and Klotz, I. M., 1979. Steric disposition of oxygen in oxyhemoglobin as revealed by its resonance Raman spectrum, Biochem. Biophys. Res. Commun. 90:1098.PubMedCrossRefGoogle Scholar
  17. Dutta, P. K., and Spiro, T. G., 1980. Resonance coherent anti-Stokes Raman scattering spectra of oxidized and semiquinone forms of Clostridium MP flavodoxin, Biochemistry 19:1590.PubMedCrossRefGoogle Scholar
  18. Eickman, N. C., Solomon, E. I., Larrabee, J. A., Spiro, T. G., and Lerch, K., 1978. Ultraviolet resonance Raman study of oxytyrosinase. Comparison with oxyhemocyanins, J. Am. Chem. Soc. 100:6529.CrossRefGoogle Scholar
  19. Freedman, T. B., Santillo, F. S., Zimba, C. G. Nafie, L. A., and Dabrowiak, J. C., 1983. Raman spectral studies of bleomycin A2 and related structural fragments: A probe for bleomycin-DNA interactions, J. Raman Spectrosc. 14:266.CrossRefGoogle Scholar
  20. Frushour, B. G., and Koenig, J. L., 1975. Raman spectroscopy of proteins, in Advances in Infrared and Raman Spectroscopy (R. J. H. Clark and R. E. Hester, eds.), Heyden and Son, New York.Google Scholar
  21. Gaber, B. P., and Peticolas, W. L., 1977. On the quantitative interpretation of biomembrane structure by Raman spectroscopy, Biochim. Biophys. Acta 465:260.PubMedCrossRefGoogle Scholar
  22. Ghiretti, F. (ed.), 1968. Physiology and Biochemistry of Hemocyanins ,Academic Press, New York.Google Scholar
  23. Heiman, D., Hellwarth, R. W., Levenson, M. D., and Martin, G., 1976. Raman-induced Kerr effect, Phys. Rev. Lett. 36:189.CrossRefGoogle Scholar
  24. Hilinski, E. F., and Rentzepis, P. M., 1983. Biological applications of picosecond spectroscopy, Nature (London) 302:481.CrossRefGoogle Scholar
  25. Horak, M., and Horak, A. V., 1979. Interpretation and Processing of Vibrational Spectra ,John Wiley &Sons, New York.Google Scholar
  26. Hori, H., and Kitagawa, T., 1980. Iron-ligand stretching band in the resonance Raman spectra of ferrous iron porphyrin derivatives. Importance as a probe band for quaternary structure of hemoglobin, J. Am. Chem. Soc. 102:3608.CrossRefGoogle Scholar
  27. Horrocks, W. D., Rhee, M., Snyder, A. P., and Sudnick, D. R., 1980. Laser-induced metal ion luminescence: Interlanthanide ion energy transfer distance measurements in calcium binding proteins, parvalbumin and thermolysin, J. Am. Chem. Soc. 102:2650.CrossRefGoogle Scholar
  28. Kannan, K. K., Notstrand, B., Fridborg, L., Lorgren, S., Ohlsson, A., and Petef, M., 1975. Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2-ang. resolution, Proc. Natl. Acad. Sci. U.S.A. 72:51.PubMedCrossRefGoogle Scholar
  29. Katz, J. J., 1973. Chlorophyll interactions and light conversion in photosynthesis, Natur-wissenchaften 60:32.CrossRefGoogle Scholar
  30. Keller, R. M., Wuethrich, K., and Debrunner, P. G., 1972. Proton magnetic resonance reveals high-spin iron(II) in ferrous cytochrome P450 from Pseudomonas putida, Proc. Natl. Acad. Sci. U.S.A. 69:2073.PubMedCrossRefGoogle Scholar
  31. Kitagawa, T., Ogoshi, H., Watanabe, E., and Yoshida, Z., 1975. Resonance Raman scattering from metallo-porphyrins. Metal and ligand dependence of the vibrational frequencies of octaethylporphyrins, J. Phys. Chem. 79:2629.CrossRefGoogle Scholar
  32. Kitagawa, T., Ozaki, Y., and Kyogoku, Y., 1978. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins, Adv. Biophys. 11:153.PubMedGoogle Scholar
  33. Kitagawa, T., Nishina, Y., Kyogoku, Y., Yamano, T., Ohishi, N., Takai-Suzuki, A., and Yagi, K., 1979. Resonance Raman spectra of carbon-13 and ntirogen-15-labeled riboflavin bound to egg-white flavoprotein, Biochemistry 18:1804.PubMedCrossRefGoogle Scholar
  34. Koch, S., Tang, S. C, Holm, R. H., Frankel, R. B., and Ibers, J. A., 1975. Ferric porphyrin thiolates. Possible relationship to cytochrome P-450 enzymes and the structure of (p-nitrobenzenethiolato) iron(III) proton porphyrin IX dimethyl ester, J. Am. Chem. Soc. 97:916.PubMedCrossRefGoogle Scholar
  35. Kurtz, D. M., Shriver, D. F., and Klotz, I. M., 1976. Resonance Raman spectroscopy with unsymmetrically isotopic ligands. Differentiation of possible structures of hemerythrin complexes, J. Am. Chem. Soc. 98:5033.PubMedCrossRefGoogle Scholar
  36. Kurtz, D. M., Shriver, D. F., and Klotz, I. M., 1977. Structural chemistry of hemerythrin, Coord. Chem. Rev. 24:145.CrossRefGoogle Scholar
  37. Larrabee, J. A., 1978. Resonance Raman studies of copper proteins, Diss. Abstracts Int. B 39:2773.Google Scholar
  38. Lippert, J. L., Tyminski, D., and Desmeules, P. J., 1976. Determination of the secondary structure of proteins by laser Raman spectroscopy, J. Am. Chem. Soc. 98:7075.PubMedCrossRefGoogle Scholar
  39. Loehr, J. S., Freedman, T. B., and Loehr, T. M., 1974. Oxygen binding to hemocyanin. Resonance Raman spectroscopic study, Biochem. Biophys. Res. Commun. 56:510.PubMedCrossRefGoogle Scholar
  40. Long, T. V., and Loehr, T. M., 1970. The possible determination of iron coordination in nonheme iron proteins using laser-Raman spectroscopy. II. Clostridium pasteurianium rubredoxin in aqueous solution, J. Am. Chem. Soc. 93:1809.CrossRefGoogle Scholar
  41. Lontie, R., and Witters, R., 1973. Hemocyanin, in Inorganic Biochemistry ,Vol. i (G. L. Eichhorn, ed.), Elsevier, Amsterdam, Chapter 12.Google Scholar
  42. Lucia, T., and Gamier, A., 1979. Circular dichroism and resonance Raman spectra of the Cu(II)-Cu(I) complex of D-penicillamine. The CuS(cys) stretching mode in blue copper proteins, Biochem. Biophys. Res. Commun. 91:1273.CrossRefGoogle Scholar
  43. Luoma, G. A., and Marshall, A. G., 1978. Laser Raman evidence for new cloverleaf secondary structures for eukaryotic 5.8S RNA and prokaryotic 5S RNA, Proc. Natl. Acad. Sci. U.S.A. 75:4901.PubMedCrossRefGoogle Scholar
  44. Lutz, M., Kleo, J., Gilet, R., Henry, M., Plus, R., and Leicknam, J. R., 1976. Vibrational spectra of chlorophylls a and b labelled with magnesium-26 and nitrogen-15, in Proc. Int. Conf. Stable Isotopes ,2nd (1975), (E. R. Klein and P. D. Klein, eds.). NTIS, Springfield, Virginia.Google Scholar
  45. Lutz, M., Brown, J. S., and Remy, R., 1979. Resonance Raman spectroscopy of chlorophyll-protein complexes, Ciba Found. Symp. 61 (Chlorophyll Organ. Energy Transfer Photosynthesis): 105.Google Scholar
  46. Lyons, K. B., Friedman, J. M., and Fleury, P. A., 1978. Nanosecond transient Raman spectra of photolyzed carboxyhemoglobin, Nature (London) 275:565.CrossRefGoogle Scholar
  47. Marcus, M. A., 1978. Picosecond absorption and emission spectroscopy and kinetic and steady state resonance Raman spectroscopy of native isotopically labeled bacterio-rhodopsin, Diss. Abstracts Int. B 39:1601.Google Scholar
  48. Mathies, R., Freedman, T. B., and Stryer, L., 1977. Resonance Raman studies of the conformation of retinal in rhodopsin and isorhodopsin, J. Mol. Biol. 109:367.PubMedCrossRefGoogle Scholar
  49. Minck, R. W., Terhune, R. W., and Rado, W. G., 1963. Laser-stimulated Raman effect and resonant four-photon interactions in the gases H2, D2 and CH4, Appl. Phys. Lett. 3:181.CrossRefGoogle Scholar
  50. Morris, M. D., and Wallan, D. J., 1979. Resonance Raman spectroscopy. Current applications and prospects, Anal. Chem. 5L182A.CrossRefGoogle Scholar
  51. Moses, V., Holm-Hansen, O., and Calvin, M., 1958. Response of chlorella to a deuterium environment, Biochim. Biophys. Acta 28:62.PubMedCrossRefGoogle Scholar
  52. Nestor, J. R., Spiro, T. G., and Klauminzer, G. K., 1976. Coherent anti-Stokes Raman scattering (CARS) spectra, with resonance enhancement of cytochrome-C and Vitamin B12 in dilute aqueous solution, Proc. Natl. Acad. Sci. U.S.A. 73:3329.PubMedCrossRefGoogle Scholar
  53. Nocentini, S., and Chinsky, L., 1983. In vivo studies of nucleic acid by ultraviolet resonance Raman spectroscopy on eukaryotic living cells, J. Raman Spectrosc. 14:9.CrossRefGoogle Scholar
  54. Omenotto, N., 1979. Analytical Laser Spectroscopy ,John Wiley &Sons, New York.Google Scholar
  55. Owyoung, A., 1978. Coherent Raman gain spectroscopy using CW laser sources, IEEE J. Quantum Electron. QE-14L192.Google Scholar
  56. Ozaki, Y., Kitagawa, T., and Kyogoku, Y., 1978. Resonance Raman studies of hepatic microsomal cytochromes P-450: Evidence for strong pi basicity of the fifth ligand in the reduced and carbonyl complex forms, Biochemistry 17:5826.PubMedCrossRefGoogle Scholar
  57. Parker, F. S., 1983. Applications of Infrared, Raman and Resonance Raman Spectroscopy in Biochemistry ,Plenum Press, New York.Google Scholar
  58. Prescott, B., Steinmetz, W., and Thomas, G. J., Jr., 1984. Characterization of DNA structures by laser Raman spectroscopy, Biopolymers 23:235.PubMedCrossRefGoogle Scholar
  59. Reynolds, A. H., Rand, S. D., and Rentzepis, P. M., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:2292.PubMedCrossRefGoogle Scholar
  60. Salares, V. R., Young, N. M., Bernstein, H. J., and Carey, P. R., 1978. Mechanisms of spectral shifts in lobster carotenoproteins. The resonance Raman spectra of ovoverdin and the crustacyanins, Biochim. Biophys. Acta. 576:176.Google Scholar
  61. Salmeen, I., Rimai, L., and Babcock, G. T., 1978. Raman spectra of heme a ,cytochrome oxidase-ligand complexes, and alkaline denatured oxidase, Biochemistry 17:800.PubMedCrossRefGoogle Scholar
  62. Siiman, O. and Carey, P. R., 1980. Resonance Raman spectra of some ferric and cupric thiolate complexes, J. Inorg. Biochem. 12:353.CrossRefGoogle Scholar
  63. Siiman, O., Young, N. M., and Carey, P. R., 1974. Resonance Raman studies of blue copper proteins, J. Am. Chem. Soc. 96:5583.PubMedCrossRefGoogle Scholar
  64. Solomon, E. I., Hare, J. W., and Gray, H. B., 1976. Spectroscopic studies and a structural model for blue copper centers in proteins, Proc. Natl. Acad. Sci. U.S.A. 73:1389.PubMedCrossRefGoogle Scholar
  65. Spiro, T. G., and Gaber, B. P., 1977. Laser Raman scattering as a probe of protein structure, Annu. Rev. Biochem. 46:553.PubMedCrossRefGoogle Scholar
  66. Spiro, T. G., and Strekas, T. C., 1974. Resonance Raman spectra of heme proteins. Effects of oxidation and spin state, J. Am. Chem. Soc. 96:338.PubMedCrossRefGoogle Scholar
  67. Steinfeld, J. I. (ed.), 1978. Laser and Coherence Spectroscopy ,Plenum Press, New York.Google Scholar
  68. Tang, S. P. W., Spiro, T. G., Antanaitas, C., Moss, T. H., Holm, R. H., Herskovitz, T., and Mortensen, L. E., 1975. Resonance Raman spectroscopic evidence for structural variation among bacterial ferredoxin, HIPIP, and Fe4S4(SC2PI)42-, Biochem. Biophys. Res. Commun. 62:1.PubMedCrossRefGoogle Scholar
  69. Terhune, R. W., 1963. Coherent anti-Stokes Raman spectroscopy, Bull. Am. Phys. Soc. 8:359.Google Scholar
  70. Thomas, G. J., and Kyogoku, Y., 1977. In Infrared and Raman Spectroscopy (E. G. Brame and J. G. Grasselli, eds.), Part C (Biological Science), Marcel Dekker, New York, pp. 717–861.Google Scholar
  71. Tsai, C. W., and Morris, M. D., 1975. Application of resonance Raman spectrometry to the determination of vitamin B12, Anal. Chim. Acta 76:193.PubMedCrossRefGoogle Scholar
  72. Vergoten, G., Fleury, G., and Moschetto, Y., 1978. Low frequency vibrations of molecules with biological interest, in Advances in Infrared and Raman Spectroscopy ,Vol. 4 (R. J. H. Clark and R. E. Hester, eds.), Heyden and Son, New York, pp. 195–269.Google Scholar
  73. Woodruff, W. H. and Farquharson, S., 1978. Time-resolved resonance Raman spectroscopy (TR3) and related vidicon Raman spectrography: Vibrational spectra in nanoseconds, in New Applications of Lasers to Chemistry. ACS Symposium Series ,Vol. 85, (G. M. Hieftje, ed.), American Chemical Society Publications, Washington, D.C., pp. 216–236.Google Scholar
  74. Yaney, P. P., 1972. Reduction of fluorescence background in Raman spectra by pulsed Raman technique, J. Opt. Soc. Am. 62:1297.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Wright
    • 1
  • Wayne A. Hendrickson
    • 2
  • Shigemasa Osaki
    • 3
  • Gordon T. James
    • 4
  1. 1.Southeastern Oklahoma State UniversityDurantUSA
  2. 2.Columbia UniversityNew YorkUSA
  3. 3.Hybritech, Inc.San DiegoUSA
  4. 4.Health Sciences CenterUniversity of ColoradoDenverUSA

Personalised recommendations