Electron Energy Levels: Electron Spectroscopy and Related Methods

  • John R. Wright
  • Wayne A. Hendrickson
  • Shigemasa Osaki
  • Gordon T. James
Part of the Biochemistry of the Elements book series (BOTE, volume 5)


Methods for probing the electronic energy levels within atoms and molecules include visible and ultraviolet spectroscopy (both absorption and emission). In these cases the observed transitions between the ground state and excited state atomic or molecular orbitals are internal events which are often difficult to interpret. As a general rule the optical spectroscopic methods lack element specificity for the purpose of nondestructive biomolecular studies unless it has been rigorously established from other evidence that a given chromophore is localized at a particular set of atoms. Since this volume is concerned with approaches which either offer absolute atom specificity, as in nmr or Mössbauer spectroscopy, or sufficient self-contained information to allow a reasonable conclusion as to the type of atoms involved, the older optical methods have been excluded. The reader is referred to a reference on that subject (Harris and Bertolucci, 1978). The author does not mean to diminish the importance of ultraviolet and visible spectroscopy, e.g., as in studies of bonding environments at transition metal ions (Sutton, 1968), and Chapter 9 examines magnetic circular dichroism.


Auger Electron Electron Spectroscopy Photoelectron Spectrum Magnetic Circular Dichroism Auger Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, C., and Joiner, R. W., 1979. The application of deconvolution methods in electron spectroscopy-A review, J. Electron Spectrosc. Relat. Phenom. 16:1.CrossRefGoogle Scholar
  2. Betty, K. R., and Horlick, G., 1976a. A simple and versatile Fourier domain digital filter, Appl. Spectrosc. 30:23.CrossRefGoogle Scholar
  3. Betty, K. R., and Horlick, G. 1976b. Autocorrelation analysis of noisy periodic signals utilizing a serial analog memory, Anal. Chem. 48:1979.CrossRefGoogle Scholar
  4. Blaisdell, J. M., and Grieger, G. R., 1979. ESCA study of air filters, Am. Lab. 11:85.Google Scholar
  5. Brundle, C. R., and Baker, A. D. (eds.), 1984. Electron Spectroscopy: Theory, Techniques and Applications ,Vols. 1–5, Academic Press, New York.Google Scholar
  6. Brundle, C. R., and Robin, M. B., 1971. Photoelectron Spectroscopy, in Determination of Organic Structures by Physical Methods. Vol. 3 (F. Nachod and J. J. Zuckerman, eds.), Academic Press, New York, pp. 1–71.Google Scholar
  7. Cannington, P. H., and Ham, N. S., 1983. He(I) and He(II) Photoelectron spectra of glycine and related molecules, J. Electron Spectrosc. Relat. Phenom. 32:139.CrossRefGoogle Scholar
  8. Carlson, T. A., 1975. Photoelectron and Auger Spectroscopy ,Plenum Press, New York.Google Scholar
  9. Chiu, D., Tappel, A. L., and Millard, M. M., 1977. Improved procedure for X-ray photoelectron spectroscopy of selenium-glutathione peroxidase and application to the rat liver enzyme, Arch. Biochem. Biophys. 184:209.PubMedCrossRefGoogle Scholar
  10. Fielden, E. M., Roberts, P. B., Bray, R. C., Lowe, D. J., Mautner, G. N., Rotilio, G., and Calabrese, L., 1974. The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis, Biochem. J. 139:49.PubMedGoogle Scholar
  11. Flohe, L., Guenzler, W. A., and Schock, H. H., 1973. Glutathione peroxidase. Selenoen-zyme, FEBS Lett. 32:132.PubMedCrossRefGoogle Scholar
  12. Gagne, R. R., Allison, J. L., Koval, C. A., Mialki, W. S., Smith, T. J., and Walton, R. A., 1980. X-ray photoelectron spectra of copper (I) and copper (II) complexes derived from macrocyclic ligands, J. Am. Chem. Soc. 102:1905.CrossRefGoogle Scholar
  13. Gerlach, R. L., 1971. Ionization spectroscopy of contaminated metal surfaces, J. Vac. Sci. Technol. 8:599.CrossRefGoogle Scholar
  14. Harris, D. C, and Bertolucci, M. D., 1978. Symmetry and Spectroscopy, An Introduction to Vibrational and Electronic Spectroscopy ,Oxford University Press, New York.Google Scholar
  15. Hiraki, A., Kim, S., Kammura, W., and Iwami, M., 1979. Chemical effect in (LVV) Auger spectra of third-period elements (aluminum, silicon, phosphorous and sulfur) dissolved in copper, Appl. Phys. Lett. 34:194.CrossRefGoogle Scholar
  16. Hoglund, A., and Odeblad, E., 1977. Auger electron spectra of sodium bound to keratin and other biological materials, Phys. Scr. 16:370.CrossRefGoogle Scholar
  17. Ioffe, M. S., Ivleva, I. N., and Borod’kd, Yu G., 1978. Temperature effects in X-ray photoelectron spectra of paramagnetic cupric and iron complexes with anomalous magnetic properties, Chem. Phys. Lett. 59:549.CrossRefGoogle Scholar
  18. Janssen, A. P., and Venables, J. A., 1979. Scanning Auger microscopy-An introduction for biologists, Scanning Electron Microsc. 1979(2):259.Google Scholar
  19. Jones, D., Distefano, G., Toniolo, C., and Bonora, G. M., 1978. Linear oligopeptides. Part 47. A new method for determining sulfoxides in peptide molecules using X-ray photoelectron spectroscopy, Biopolymers 17:2703.CrossRefGoogle Scholar
  20. Joy, D. C., and Maher, D. M., 1978. A practical electron spectrometer for chemical analysis, J. Microsc. (Oxford) 114:117.CrossRefGoogle Scholar
  21. Karweik, D., and Winograd, N., 1976. Nitrogen charge distri9butions in free-base porphyrins, metalloporphyrins, and their reduced analogs observed by X-ray photoelectron spectroscopy, Inorg. Chem. 15:2336.CrossRefGoogle Scholar
  22. Koopmans, T., 1933. The distribution of wave function and characteristic value among the individual electrons of an atom, Physica 1:104.CrossRefGoogle Scholar
  23. Larsson, S., 1977. Sulfur 2p photoelectron spectrum of blue copper proteins. Comment on papers by Solomon et al. ,and Peeling et al., J. Am. Chem. Soc. 99:7708.CrossRefGoogle Scholar
  24. Lee, R. N., 1982. The effect of nonlinearities on XPS calibration, J. Electron Spectrosc. Relat. Phenom. 28:195.CrossRefGoogle Scholar
  25. Lindberg, B. J., 1974. Can we expect any meaningful correlations between nmr and ESCA-Shifts?, J. Electron Spectrosc. Relat. Phenom. 5:149.CrossRefGoogle Scholar
  26. Lindberg, B., Asplund, L., Fellner-Feldegg, H., Kelfve, D., Siegbahn, H., and Siegbahn, K., 1976. ESCA applied to liquids. ESCA spectra from molecular ions in solution, Chem. Phys. Lett. 39:8.CrossRefGoogle Scholar
  27. McMillin, D. R., Rosenberg, R. C., and Gray, H. B., 1974. Preparation and spectroscopic studies of cobat (II) derivatives of blue copper proteins, Proc. Natl. Acad. Sci. U.S.A. 71:4760.PubMedCrossRefGoogle Scholar
  28. Maksic, Z. B., Rupnik, K., and Veseli, A., 1983. Semiempirical studies of core electron binding energies Part II. SCC-MO calculations for uracil and its derivatives, J. Electron Spectrosc. Relat. Phenom. 32:163.CrossRefGoogle Scholar
  29. Millard, M. M., 1978. Surface characterization of biological materials by X-ray photoelectron spectroscopy, Contemp. Top. Anal. Clin. Chem. 3:1.Google Scholar
  30. Nakagaki, R., Frost, D. C, and McDowell, C. A., 1982. Shake-up satellites in the nitro N ls spectra of highly polar nitro-aromatic amines, J. Electron Spectrosc. Relat. Phenom. 27:69.CrossRefGoogle Scholar
  31. Palmberg, P. W., Bohn, G. K., and Trach, J. C, 1969. High sensitivity Auger electron spectrometer, Appl. Phys. Lett. 15:254.CrossRefGoogle Scholar
  32. Peeling, J., Haslett, B. G., Evans, I. M., Clark, D. T., and Boulter, D., 1977. Some observations on the ESCA spectra of plastocyanins, J. Am. Chem. Soc. 99:1025.PubMedCrossRefGoogle Scholar
  33. Popkie, H., Koski, W., and Kaufman, J., 1976. Ab-initio LCAO-MO-SCF calculations of morphine and nalorphine and measurements of their photoelectron spectra, J. Am. Chem. Soc. 98:1342.PubMedCrossRefGoogle Scholar
  34. Rabinowitz, I. N., and Elliot, J. S., 1976. Auger analysis: Its application to urinary calculi, in Proceedings of the International Colloquium of Renal Lithiasis (1975) ,(B. Finlayson and W. C. Thomas, eds.), University Presses of Florida, Gainesville, Florida, p. 149.Google Scholar
  35. Richardson, J. S., Thomas, K. A., Rubin, B. H., and Richardson, D. C, 1975. Crystal structure of bovine Cu, Zn superoxide dismutase at 3 angstrom resolution: Chain tracing and metal ligands, Proc. Natl. Acad. Sci. U.S.A. 72:1349.PubMedCrossRefGoogle Scholar
  36. Rupp, H., and Weser, U., 1975. X-ray photoelectron spectroscopy of some selenium containing amino acids, Bioinorg. Chem. 5:21.PubMedCrossRefGoogle Scholar
  37. Rupp, H., and Weser, U., 1976. Copper(I) and copper(II) in complexes of biochemical significance studied by X-ray photoelectron spectroscopy, Biochem. Biophys. Acta. 446:151.PubMedGoogle Scholar
  38. Sherwood, P. M. A., 1976. Photoelectron spectroscopy, New Tech. Biophys. Cell. Biol. 3:93.Google Scholar
  39. Siegbahn, K., 1974. Electron spectroscopy-An outlook, J. Electron Spectrosc. Related Phenom. 5:3.CrossRefGoogle Scholar
  40. Siegbahn, K., Nordling, C., Johansson, G., Hedman, J., Heden, P. F., Hamrin, K., Gelius, U., Bergmark, T., Woerme, L. O., Manne, R., and Baer, Y., 1970. ESCA Applied to Free Molecules ,American Elsevier, New York.Google Scholar
  41. Solomon, E. I., Clendening, P. J., Gray, H. B., and Grunthaner, F. J., 1975. Direct observation of sulfur coordination in bean plastocyanin by X-ray photoelectron spectroscopy, J. Amer. Chem. Soc. 97:3878.CrossRefGoogle Scholar
  42. Spicer, W. E., Linda V.I., and Helms, C. R., 1977. Frontiers in surface and interface analysis, Research Development 28, pp. 20–31.Google Scholar
  43. Sutton, D., 1968. Electrical Spectra of Transition Metal Complexes ,McGraw-Hill, New York.Google Scholar
  44. Thompson, M., Whelan, J., Zemon, D. J., Bosnich, B., Soloman, E. I., and Gray, H. B., 1979. Sulpher 2p photoelectron spectra of 1,8-Bis (2-pyridyl)-3, 6-dithiaoctane and its copper II complex. Possible interpretation of the S2p 168 eV peak in blue copper proteins, J. Amer. Chem. Soc. 101:2482.CrossRefGoogle Scholar
  45. Turner, D. W., Baker, C., Baker, A. D., and Brundle, C. R., 1970. Molecular Photoelectron Spectroscopy: A Handbook of He 584 A Spectra ,Wiley-Interscience, New York.Google Scholar
  46. Van der Deen, H., Van Driel, R., Jonkman-Beuker, A. H., Sawatzky, G. A., and Wever, R., 1977. X-ray photoelectron spectroscopic studies of hemocyanin and superoxide dismutase, in Structure and Function of Haemocyanin, Proceedings of the European Molecular Biology, 5th International Workshop ,(J. V. Bannister ed.), Springer-Verlag, Berlin, pp. 172–179.Google Scholar
  47. Weser, U., and Rupp, H., 1978. Assignment of the correct oxidation state of biochemically active copper, Proceedings of the Third International Symposium on Trace Element-Metabolism in Man and Animals ,(M. Kirchgessner, ed.), Weihenstepan Institute, Weihenstepan, Germany, pp. 40–43.Google Scholar
  48. Weser, U., Younes, M., Hartmann, H. J., and Zienau, S., 1979. X-ray photoelectron spectrometric aspects of the copper chromophore in plastocyanin, FEBS Lett. 97:311.PubMedCrossRefGoogle Scholar
  49. Winograd, N., Shepard, A., Karweik, D., Koester, V., and Fong, F., 1976. X-ray photoelectron spectroscopic studies of the thermal stability of chlorophyll-a monohydrate, J. Am. Chem. Soc. 98:2369.CrossRefGoogle Scholar
  50. Woodruff, D. P., 1977. Auger electron spectroscopy: Principles, developments and applications, in Developments in Electron Microscopy and Analysis ,Proceedings of the Electron Microscopy Analysis Group, Institute of Physics, University of Bristol, (J. A. Venable, ed.), Academic Press, New York, pp. 337–342.Google Scholar
  51. Wurzbach, J. A., Grunthaner, P. J., Dooley, D. M., Gray, H. B., Grunthaner, F. J., Gay, R. R., and Solomon, E. I., 1977. Sulfur 2p photoelectron spectrum of limulus oxyhem-ocyanin. Reply to observations on the ESCA spectra of plastocyanins, J. Am. Chem. Soc. 99:1257.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Wright
    • 1
  • Wayne A. Hendrickson
    • 2
  • Shigemasa Osaki
    • 3
  • Gordon T. James
    • 4
  1. 1.Southeastern Oklahoma State UniversityDurantUSA
  2. 2.Columbia UniversityNew YorkUSA
  3. 3.Hybritech, Inc.San DiegoUSA
  4. 4.Health Sciences CenterUniversity of ColoradoDenverUSA

Personalised recommendations