Advertisement

X-ray Diffraction Methods for the Analysis of Metalloproteins

  • John R. Wright
  • Wayne A. Hendrickson
  • Shigemasa Osaki
  • Gordon T. James
Part of the Biochemistry of the Elements book series (BOTE, volume 5)

Abstract

Research in the natural sciences is nearly always carried out in the context of a structural image of the subject material. This image or model, be it founded on experimental fact or imagined from analogous structures, provides a conceptual framework on which to base both theory and experiment. The relevant structural images in chemical research are those of the atomic arrangements in molecules. In the case of biochemistry it is our images of macromolecular structures (including their dynamic behavior) that relate directly to our approach to such basic problems as how enzymes work, how molecular aggregates self-assemble, how biological systems communicate information and transfer energy, how genes replicate, and how membranes transport specific ions. Metal atoms often play important roles in these biochemical processes, and structural images of such metal centers are pertinent to the study of these questions.

Keywords

Metal Center Protein Crystal Acta Cryst Phase Determination Molecular Replacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Mequid, S. S., Yamane, T., Fukuyama, K., and Rossmann, M. G., 1981. The location of calcium ions in Southern bean mosaic virus. Virology 114:81.Google Scholar
  2. Adman, E. T., Sieker, L. C., and Jensen, L. H., 1973. The structure of a bacterial ferredoxin. J. Biol. Chem. 248:3987.PubMedGoogle Scholar
  3. Adman, E. T., Sieker, L. C., Jensen, L. H., Bruschi, M., and LeGall, J., 1977. A structural model of rubredoxin from Desulfovibrio vulgaris at 2 Å resolution. J. Mol. Biol. 112:113.PubMedGoogle Scholar
  4. Adman, E. T., Stenkamp, R. E., Sieker, L. C., and Jensen, L. H., 1978. A crystallographic model for azurin at 3 Å resolution. J. Mol. Biol. 123:35.PubMedGoogle Scholar
  5. Agarwal, R. C., 1978. A new least-squares refinement technique based on the fast Fourier transform algorithm. Acta Cryst. A34:791.Google Scholar
  6. Almassy, R. J., and Dickerson, R. E., 1978. Pseudomonas cytochrome c551 at 2.0 Å resolution: Enlargement of the cytochrome c family. Proc. Natl. Acad. Sci. U.S.A. 75:2674.PubMedGoogle Scholar
  7. Argos, P., Ford, G. C., and Rossmann, M. G., 1975. An application of the molecular replacement technique in direct space to a known protein structure. Acta Cryst. A31:499.Google Scholar
  8. Arndt, U. W., 1977. Television area detectors. In The Rotation Method in Crystallography (U. W. Arndt and A. J. Wonacott, eds.), North-Holland, Amsterdam, pp. 245–262.Google Scholar
  9. Arndt, U. W., and Willis, B. T. M., 1966. Single Crystal Diffractometry ,Cambridge University Press, Cambridge.Google Scholar
  10. Arndt, U. W., and Wonacott, A. J., 1977. The Rotation Method in Crystallography ,North-Holland, Amsterdam.Google Scholar
  11. Arnone, A., Bier, C. J., Cotton, F. A., Day, V. W., Hazen, E. E., Richardson, D. C, Richardson, J. S., and Yonath, A., 1971. A high resolution structure of an inhibitor complex of the extracellular nuclease of Staphylococcus aureus. J. Biol. Chem. 246:2302.PubMedGoogle Scholar
  12. Ashida, T., Tanaka, N., Yamane, T., Tsukihara, T., and Kakudo, M., 1973. The crystal structure of Bonito (Katsuo) ferrocytochrome c at 2.3 Å resolution. J. Biochem. (Tokyo) 73:463.Google Scholar
  13. Baker, E. N., 1977. Structure of actinidin: Details of the polypeptide chain conformation and active site from an electron density map at 2.8 A resolution. J. Mol. Biol. 115:263.PubMedGoogle Scholar
  14. Baker, E. N., 1981. Personal communication.Google Scholar
  15. Banyard, S. H., Stammers, D. K., and Harrison, P. M., 1978. Electron density map of apoferritin at 2.8 A resolution. Nature 271:282.PubMedGoogle Scholar
  16. Becker, J. W., Reeke, G. N., Jr., Wang, J. L., Cunningham, B. A., and Edelman, G. M., 1975. The covalent and three-dimensional structure of concanavalin A. J. Biol. Chem. 250:1513.PubMedGoogle Scholar
  17. Bentley, G., Dodson, E., Dodson, G., Hodgkin, D., and Mercola, D., 1976. Structure of insulin in 4-zinc insulin. Nature 261:166.PubMedGoogle Scholar
  18. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M., 1977. The protein data bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 112:535.PubMedGoogle Scholar
  19. Bhat, T. N. and Blow, D. M., 1982. A density-modification method for the improvement of poorly resolved protein electron-density maps. Acta Cryst. A38:21.Google Scholar
  20. Blow, D. M., and Crick, F. H. C, 1959. The treatment of errors in the isomorphous replacement method. Acta Cryst. 12:794.Google Scholar
  21. Blundell, T. L., and Jenkins, J., 1977. Binding of heavy metals to proteins. Chem. Soc. Rev. 6:139.Google Scholar
  22. Blundell, T. L., and Johnson, L. N., 1976. Protein Crystallography ,Academic Press, London.Google Scholar
  23. Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., Mercola, D. A., and Vijayan, M., 1971. Atomic positions in rhombohedral 2-zinc insulin crystals. Nature 231:506.PubMedGoogle Scholar
  24. Bode, W., and Schwager, P., 1976. The refined crystal structure of bovine -trypsin at 1.8 Å resolution. J. Mol. Biol. 98:693.Google Scholar
  25. Bricogne, G., 1974. Geometric sources of redundancy in intensity data and their use for phase determination. Acta Cryst. A30:395.Google Scholar
  26. Bricogne, G., 1976. Methods and programs for direct-space exploitation of geometric redundancies. Acta Cryst. A32:832.Google Scholar
  27. Bricogne, G., 1982a. Multiple isomorphous relacement. In Computational Crystallography (D. Sayre, ed.), Oxford University Press, Oxford, pp. 223–230.Google Scholar
  28. Bricogne, G., 1982b. Generalized density-modification methods. In Computational Crystallography (D. Sayre, ed.), Oxford University Press, Oxford, pp. 258–264.Google Scholar
  29. Buerger, M. J., 1963. Elementary Crystallography ,Wiley, New York.Google Scholar
  30. Buerger, M. J., 1964. The Precession Method ,Wiley, New York.Google Scholar
  31. Cantor, C. R., and Schimmel, P. R., 1980. Biophysical Chemistry ,Part II, Freeman, San Francisco, Chapter 13.Google Scholar
  32. Carrell, H. L., 1982. Structural studies of D-xylose isomerase. Abstracts of the American Crystallographic Association, La Jolla Meeting, Ser. 2, Vol. 10, No. 2, p. 35.Google Scholar
  33. Carter, C. W., Jr., Kraut, J., Freer, S. T., Xuong, Ng.-H., Alden, R. A., and Bartsch, R. G., 1974. Two-angstrom crystal structure of oxidized Chromatium high-potential iron protein. J. Biol. Chem. 249:4212.PubMedGoogle Scholar
  34. Collins, D. M., 1982. Electron density images from imperfect data by iterative entropy maximization. Nature 298:49.Google Scholar
  35. Colman, P. M., 1974. Noncrystallographic symmetry and the sampling theorem. Z. Kris-tollogr. 140:344.Google Scholar
  36. Colman, P. M., Freeman, H. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M., and Venkatappa, M. P., 1978. X-ray crystal structure analysis of plastocyanin at 2.7 A resolution. Nature 272:319.Google Scholar
  37. Cotton, F. A., and Wilkinson, G., 1972. Advanced Inorganic Chemistry ,3rd ed., Intersci-ence, New York.Google Scholar
  38. Cramer, S. P., and Hodgson, K. O., 1978. X-ray absorption spectroscopy: A new structural method and its applications to bioinorganic chemistry. Progr. Inorg. Chem. 25:1.Google Scholar
  39. Crowther, R., 1972. The fast rotation function. In The Molecular Replacement Method (M. G. Rossmann, ed.), Gordon and Breach, New York, pp. 174–177.Google Scholar
  40. Crowther, R. A., and Blow, B. D. M., 1967. A method of positioning a known molecule in an unknown crystal structure. Acta Cryst. 23:544.Google Scholar
  41. Davies, D. R., and Segal, D. M., 1971. Protein crystallization: Micro techniques involving vapor diffusion. Methods Enzymol. 22:266.Google Scholar
  42. Diamond, R., 1966. A mathematical model-building procedure for proteins. Acta Cryst. 21:253.Google Scholar
  43. Diamond, R., 1981. Bilder: A computer graphics program for biopolymers and its application to the interpretation of the structure of tobacco mosaic virus discs at 2.8 A resolution. In Biomolecular Structure, Conformation, Function and Evolution ,Vol. 1 (R. Srini-vasan, ed.), Pergamon, Oxford, pp. 567–588.Google Scholar
  44. Dickerson, R. E., Kendrew, J. C., and Strandberg, B. E., 1961. The crystal structure of myoglobin: Phase determination to a resolution of 2 Å by the method of isomorphous replacement. Acta Cryst. 14:1188.Google Scholar
  45. Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A., and Margoliash, E., 1971. Ferricytochrome c-I. General features of the horse and bonito proteins at 2.8 A resolution. J. Biol. Chem. 246:1511.PubMedGoogle Scholar
  46. Dideberg, O., and Charlier, P., 1981. Crystal structure determination of a DD carboxypep-tidase at 2.5 Å resolution. Acta Cryst. A37:C–30.Google Scholar
  47. Dijkstra, B. W., Drenth, J., Kalk, K. H., and Vandermaelen, P. J., 1978. Three-dimensional structure and disulfide bond connections in bovine pancreatic phospholipase A2. J. Mol. Biol. 124:53.PubMedGoogle Scholar
  48. Drenth, J., Jansonius, J. N., Koekoek, R., Swen, H. M., and Wolthers, B. G., 1968. Structure of papain. Nature 218:929.PubMedGoogle Scholar
  49. Eklund, H., Nordstrom, B., Zeppezauer, E., Soderlund, G., Ohlsson, I., Boiwe, T., Sod-erbert, B.-O., Tapia, O., Branden, C.-I., and Akeson, A., 1976. Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 A resolution. J. Mol. Biol. 102:27.PubMedGoogle Scholar
  50. Ernst, S. R., Franke, R. R., Kitto, G. B., Pattridge, K., and Hackert, M. L., 1982. Structure of hemoglobin from the sea cucumber Molpadia arenicola: Rotation and translation function tribulations. Abstracts of the American Crystallographic Association, La Jolla Meeting, Ser. 2, Vol. 10, No. 2, p. 37.Google Scholar
  51. Fenna, R. L., and Matthews, B. W., 1975. Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258:573.Google Scholar
  52. Garavito, M., and Rosenbusch, J. P., 1980. Three-dimensional crystals of an integral membrane protein: An initial X-ray analysis. J. Cell. Biol. 86:327.PubMedGoogle Scholar
  53. Guinier, A., 1963. X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies ,Freeman, San Francisco.Google Scholar
  54. Hanson, J. C., Watenpaugh, K. D., Sieker, L., and Jensen, L. H., 1979. A limited-range step-scan method for collecting X-ray diffraction data. Acta Cryst. A35:616.Google Scholar
  55. Hardman, K. D., Agarwal, R. C., and Freiser, M. J., 1982. Manganese and calcium binding sites of concanavalin A. J. Mol. Biol. 157:69.PubMedGoogle Scholar
  56. Harrison, S. C, 1980. Protein interfaces and intersubunit bonding-The case of tomato bushy stunt virus. Biophys. J. 32:139.PubMedGoogle Scholar
  57. Hamilton, W. C., Rollett, J. S., and Sparks, R. A., 1965. On the relative scaling of x-ray photographs. Acta Cryst. 18:129.Google Scholar
  58. Haser, R., Pierrot, M., Frey, M., Payan, F., Astier, J. P., Bruschi, M., and LeGall, J., 1979. Structure and sequence of the multihaem cytochrome C3. Nature 282:806.PubMedGoogle Scholar
  59. Hauptman, H., 1982. On integrating the techniques of direct methods and isomorphous replacement-I. The theoretical basis. Acta Cryst. A38:289.Google Scholar
  60. Hendrickson, W. A., 1971. A procedure for representing arbitrary phase probability distributions in a simplified form. Acta Cryst. B27:1472.Google Scholar
  61. Hendrickson, W. A., 1976. Radiation damage in protein crystallography. J. Mol. Biol. 106:889.PubMedGoogle Scholar
  62. Hendrickson, W. A., 1979. Phase information from anomalous scattering measurements. Acta Cryst. A35:245.Google Scholar
  63. Hendrickson, W. A., 1981. Phase evaluation in macromolecular crystallography. In Structural Aspects of Biomolecules (R. Srinivasan and V. Pattabhi, eds.), Macmillan India, New Delhi, pp. 31–80.Google Scholar
  64. Hendrickson, W. A., and Konnert, J. H., 1980. Incorporation of stereochemical information into crystallographic refinement. In Computing in Crystallography (R. Diamond, S. Ramaseshan and K. Venkatesan, eds.), Indian Institute of Science, Bangalore, pp. 13.01-13.23.Google Scholar
  65. Hendrickson, W. A., and Lattman, E. E., 1970. Representation of phase probability distributions for simplified combination of independent phase information. Acta Cryst. B26:136.Google Scholar
  66. Hendrickson, W. A., and Love, W. E., 1971. Structure of lamprey haemoglobin. Nature New Biol. 232:197.PubMedGoogle Scholar
  67. Hendrickson, W. A., and Teeter, M. M., 1981. Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature 290:107.Google Scholar
  68. Hendrickson, W. A., and Ward, K. B., 1976. A packing function for delimiting the allowable locations of crystallized macromolecules. Acta Cryst. A32:778.Google Scholar
  69. Hendrickson, W. A., Klippenstein, G. L., and Ward, K. B., 1975. Tertiary structure of myohemerythrin at low resolution. Proc. Natl. Acad. Sci. U.S.A. 72:2160.PubMedGoogle Scholar
  70. Henry, N. F. M., and Lonsdale, K., 1952. International Tables for X-ray Crystallography ,Volume 1, Kynoch Press, Birmingham.Google Scholar
  71. Herriott, J. R., Sicker, L. C., Jensen, L. H., and Lovenberg, W., 1970. Structure of rub-redoxin: An X-ray study to 2.5 Å resolution. J. Mol. Biol. 50:391.PubMedGoogle Scholar
  72. Higuchi, Y., Bando, S., Kusunoki, M., Matsuura, Y., Yasuoka, N., Kakudo, M., Yamanaka, T., Yogi, T., and Iinokuchi, N., 1981. The structure of cytochrome C3 from Desulfovibrio vulgaris ,Miyazaki at 2.5 Å resolution. Acta Cryst. A37:C–29.Google Scholar
  73. Honzatko, R. B., Crawford, J. L., Monaco, H. L., Ladner, J. E., Edwards, B. F. P., Evans, D. R., Warren, S. G., Wiley, D. C., Ladner, R. C., and Lipscomb, W. N., 1982. Crystal and molecular structures of native and CTP-liganded aspartate carbamoyltransferase from Escherichia coli. J. Mol. Biol. 160:219.PubMedGoogle Scholar
  74. Huber, R., and Kopfman, G., 1969. Experimental absorption correction: Results. Acta Cryst. A25:143.Google Scholar
  75. Huber, R., Epp, O., and Formanek, H., 1969. Ausklärung der molekülstruktur des insek-tenhämoglobins. Naturwissenschaften 56:362.PubMedGoogle Scholar
  76. Jack, A., and Levitt, M., 1978. Refinement of large structures by simultaneous minimization of energy and R factor. Acta Cryst. A34:931.Google Scholar
  77. James, R. W., 1948. False detail in three-dimensional Fourier representations of crystal structures. Acta Cryst. 1:132.Google Scholar
  78. James, R. W., 1962. The Optical Principles of the Diffraction of X-rays ,Bell, London.Google Scholar
  79. Jones, T. A., 1978. A graphics model building and refinement system for macromolecules. J. Appl. Cryst. 11:268.Google Scholar
  80. Kam, Z., Shore, H. B., and Feher, G., 1978. On the crystallization of proteins. J. Mol. Biol. 123:539.PubMedGoogle Scholar
  81. Kannan, K. K., Nostrand, B., Fridborg, K., Lovgren, S., Ohlsson, A., and Petef, M., 1975. Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2 Å resolution. Proc. Natl. Acad. Sci. U.S.A. 72:51.PubMedGoogle Scholar
  82. Karle, J., 1980. Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology. Int. J. Quantum Chem. 7:357.Google Scholar
  83. Keith, C., Feldman, D. S., Deganello, S., Glick, J., Ward, K. B., Jones, E. O., and Sigler, P. B., 1981. The 2.5 Å crystal structure of a dimeric phospholipase A2 from the venom of Crotalus atrox. J. Biol. Chem. 256:8602.PubMedGoogle Scholar
  84. Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C, and Shore, V. C., 1960. Structure of Myoglobin-A three-dimensional Fourier synthesis at 2 A resolution. Nature 185:442.Google Scholar
  85. Kirz, J., and Sayre, D., 1980. Soft X-ray microscopy of biological specimens. In Synchrotron Radiation Research (H. Winick and S. Doniach. eds.), Plenum Press, New York, pp. 277–322.Google Scholar
  86. Konnert, J. H., 1976. A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units. Acta Cryst. A32:614.Google Scholar
  87. Korszun, Z. R., and Salemme, F. R., 1977. Structure of cytochrome c555 of Chlorobium thiosulfatophilum: Primitive low-potential cytochrome c. Proc. Natl. Acad. Sci. U.S.A. 74:5244.PubMedGoogle Scholar
  88. Kossiakoff, A. A., Chambers, J. L., Kay, L. M., and Stroud, R. M., 1977. Structure of bovine trypsinogen at 1.9 Å resolution. Biochemistry 16:654.PubMedGoogle Scholar
  89. Kretsinger, R. H., and Nockolds, C. E., 1973. Carp muscle calcium-binding protein. J. Biol. Chem. 248:3313.PubMedGoogle Scholar
  90. Ladenstein, R., Epp, O., Bartels, K., Jones, A., Huber, R., and Wendell, A., 1979. Structure analysis and molecular model of the solenoenzyme glutathione peroxidase at 2.8 A resolution. J. Mol. Biol. 134:199.PubMedGoogle Scholar
  91. Lattman, E. E., and Love, W. E., 1970. A rotational search procedure for detecting a known molecule in a crystal. Acta Cryst. B26:1854.Google Scholar
  92. Lattman, E. E., Nockold, C. E., Krestsinger, R. H., and Love, W. E., 1971. Structure of yellow fin tuna metmyoglobin at 6 Å resolution. J. Mol. Biol. 60:271.PubMedGoogle Scholar
  93. Liljas, A., Kannan, K. K., Bergsten, P.-C., Waara, I., Fridborg, K., Strandberg, B., Carlbom, U., Jarup, L., Lovgren, S., and Petef, M., 1972. Crystal structure of human carbonic anhydrase-c. Nature New Biol. 235:131.PubMedGoogle Scholar
  94. Liljas, L., Unge, T., Jones, T. A., Fridborg, K., Lovgren, S., Skoglund, U., and Strandberg, B., 1982. Structure of satellite tobacco necrosis virus at 3.0 Å resolution. J. Mol. Biol. 159:93.PubMedGoogle Scholar
  95. Lipscomb, W. N., 1980. Metal ion environments: The X-ray diffraction method and results. In Advances in Inorganic Biochemistry ,Vol. 2, Structure and Function of Metallo-proteins (D. W. Darnall and R. G. Wilkins, eds.), Elsevier North-Holland, New York, pp. 265–302.Google Scholar
  96. Ludwig, M. L., Hartsuck, J. A., Steitz, T. A., Muirhead, H., Coppola, J. C., Reeke, G. N., and Lipscomb, W. N., 1967. The structure of carboxypeptidase A, IV. Preliminary results at 2.8 A resolution, and a substrate complex at 6 A resolution. Proc. Natl. Acad. Sci. U.S.A. 57:511.Google Scholar
  97. Ludwig, M. L., Pattridge, K. A., Powers, T. B., Dickerson, R. E., and Takano, T., 1982. Structure analysis of a ferricytochrome c from the cyanobacterium, Anacystis nidutans. Electron Transport and Oxygen Utilization (Chien Ho, ed.), Elsevier North-Holland, New York, pp. 27–32.Google Scholar
  98. Machin, P. A., Campbell, J. W., and Elder, M., 1981. Refinement of Protein Structures ,Science and Engineering Research Council, Daresbury Laboratory, Warrenton, England.Google Scholar
  99. McPherson, A., Jr., 1976. The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis. Methods Biochem. Anal. 23:249.PubMedGoogle Scholar
  100. McPherson, A., 1980. The three-dimensional structure of canavalin at 3.0 A resolution by X-ray diffraction analysis. J. Biol. Chem. 255:10472.PubMedGoogle Scholar
  101. McPherson, A., 1982. Preparation and Analysis of Protein Crystals. Wiley, New York.Google Scholar
  102. Magnus, K. A., and Love, W. E., 1981. Crystals of a 70,000 dalton subunit of Limulus polyphemus hemocyanin. In Invertebrate Oxygen-Binding Proteins (J. Lamy and J. Lamy, eds.), Marcel Dekker, New York, pp. 363–368.Google Scholar
  103. Mathews, F. S., Bethge, P. H., and Czerwinski, E. W., 1979. The structure of cytochrome b562 from Escherichia coli at 2.5 A resolution. J. Biol. Chem. 254:1699.PubMedGoogle Scholar
  104. Mathews, F. S., Levine, M., and Argos, P., 1971. The structure of calf liver cytochrome b5 at 2.8 Å resolution. Nature New Biol. 233:15.PubMedGoogle Scholar
  105. Matsuura, Y., Kusunoki, M., Harada, W., Tanaka, N., Iga, Y., Yasuoka, N., Toda, H., Narita, K., and Kakudo, M., 1980. Molecular structure of Taka-amylase A.-I. Backbone chain folding at 3 Å resolution. J. Biochem. 87:1555.PubMedGoogle Scholar
  106. Matthews, B. W., 1966. The extension of the isomorphous replacement method to include anomalous scattering measurements. Acta Cryst. 20:82.Google Scholar
  107. Matthews, B. W., 1977. X-ray structure of proteins. In The Proteins ,3rd ed., Vol. 3 (H. Neurath and R. L. Hill, eds.), Academic Press, New York, pp. 403–590.Google Scholar
  108. Matthews, B. W., Jansonius, J. N., Colman, P. M., Schoenborn, B. P., and Dupourque, D., 1972. Three-dimensional structure of thermolysin. Nature New Biol. 238:37.PubMedGoogle Scholar
  109. Matthews, B. W., Weaver, L. H., and Kester, W. R., 1974. The conformation of thermolysin. J. Biol. Chem. 249:8030.PubMedGoogle Scholar
  110. Michel, H., 1982. Three-dimensional crystals of a membrane protein complex-the photosynthetic reaction center from Rhodopseudomonas viridis. J. Mol. Biol. 158:567.PubMedGoogle Scholar
  111. Muirhead, H., and Greer, J., 1970. Three-dimensional Fourier synthesis of human deoxy-haemoglobin at 3.5 Å resolution. Nature 228:516.PubMedGoogle Scholar
  112. Narayan, R., and Nityananda, R., 1982. The maximum determinant method and the maximum entropy method. Acta Cryst. A38:122.Google Scholar
  113. Nordman, C. E., 1980. Procedures for the detection and idealization of non-crystallographic symmetry with application to phase refinement of the satellite tobacco necrosis virus structure. Acta Cryst. A36:747.Google Scholar
  114. North, A. C. T., 1965. The combination of isomorphous replacement and anomalous scattering data in phase determination of non-centrosymmetric reflexions. Acta Cryst. 18:212.Google Scholar
  115. North, A. C. T., Phillips, D. C, and Mathews, F. S., 1968. A semi-empirical method of absorption correction. Acta Cryst. A24:351.Google Scholar
  116. Ollis, D. L., 1980. Dissertation, Department of Inorganic Chemistry, University of Sydney, Australia.Google Scholar
  117. Padlan, E. A., and Love, W. E., 1974. Three-dimensional structure of hemoglobin from the polychaete annelid, Glycera dibranchiata ,at 2.5 Å resolution. J. Biol. Chem. 249:4067.PubMedGoogle Scholar
  118. Pauling, L., 1960. The Nature of the Chemical Bond ,3rd ed., Cornell University Press, Ithaca, New York.Google Scholar
  119. Perutz, M. F., Muirhead, H., Cox, J. M., and Goaman, L. C. G., 1968. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 Å resolution: The atomic model. Nature 219:131.PubMedGoogle Scholar
  120. Phillips, D. C, 1966. Advances in protein crystallography. Adv. Res. Diff. Meth. 2:75.Google Scholar
  121. Phillips, J. C, and Hodgson, K. O., 1980. The use of anomalous scattering effects to phase diffraction patterns from macromolecules. Acta Cryst. A36:856.Google Scholar
  122. Poulos, T. L., 1982. A 4 Å electron density map of cytochrome P450. Abstracts of the American Crystallographic Association, La Jolla Meeting, Ser. 2, Vol. 10, No. 2, p. 37.Google Scholar
  123. Poulos, T. L., Freer, S. T., Alden, R. A., Edwards, S. L., Skogland, J., Takio, K., Eniksson, B., Xuong, Ng. h., Yonetani, T., and Kraut, J., 1980. The crystal structure of cytochrome c peroxidase. J. Biol. Chem. 255:575.PubMedGoogle Scholar
  124. Reid, T. J., III, Murthy, M. R. N., Sicignano, A., Tanaka, N., Musick, W. D. L., and Rossmann, M. G., 1981. Structure and heme environment of beef liver catalase at 2.5 Å resolution. Proc. Natl. Acad. Sci. U.S.A. 78:4767.PubMedGoogle Scholar
  125. Richards, F. M., 1968. The matching of physical models to three-dimensional electron-density maps: A simple optical device. J. Mol. Biol. 37:225.PubMedGoogle Scholar
  126. Richardson, D. C, 1982. Personal communication.Google Scholar
  127. Richardson, J. S., 1981. The anatomy and taxonomy of protein structure. Adv. Prot. Chem. 34:167.Google Scholar
  128. Ringe Ponzi, D., Yamakura, F., Suzuki, K., Petsko, G. A., and Ohmori, D., 1983. Structure of iron superoxide-dismutase from Pseudomonas ovalis at 2.9 A resolution. Proc. Natl. Acad. Sci. U.S.A. 80:3879.Google Scholar
  129. Rossmann, M. G., 1960. An accurate determination of the position and shape of heavyatom replacement groups in proteins. Acta Cryst. 13:221.Google Scholar
  130. Rossmann, M. G., 1961. The position of anomalous scatterers in protein crystals. Acta Cryst. 14:383.Google Scholar
  131. Rossmann, M. G., and Blow, D. M., 1962. The detection of subunits within the crystallographic asymmetric unit. Acta Cryst. 15:24.Google Scholar
  132. Rossmann, M. G., and Blow, D. M., 1963. Determination of phases by the conditions of non-crystallographic symmetry. Acta Cryst. 16:39.Google Scholar
  133. Salemme, F. R., Kraut, J., and Kamen, M. D., 1973. Structural bases for function in cytochromes c-An interpretation of comparative X-ray and biochemical data. J. Biol. Chem. 248:7701.PubMedGoogle Scholar
  134. Sawyer, L., Jones, C. L., Damas, A. M., Harding, M. M., Gould, R. O., and Ambler, R. P., 1981. Cytochrome c4 from Pseudomonas aeruginosa. J. Mol. Biol. 155:831.Google Scholar
  135. Schevitz, R. W., Podjarny, A. D., Zwick, M., Hughes, J. J., and Sigler, P. B., 1981. Improving and extending the phases of medium-and low-resolution macromolecular structure factors by density modification. Acta Cryst. A37:669.Google Scholar
  136. Schmid, M. F., and Herriott, J. R., 1976. Structure of carboxypeptidase B at 2.8 Å resolution. J. Mol. Biol. 103:175.PubMedGoogle Scholar
  137. Schmidt, W. C, Jr., Girling, R. L., Houston, T. E., Sproul, G. D., Amma, E. L., and Huisman, T. H. J., 1977. The structure of sickling deer Type III hemoglobin by molecular replacement. Acta Cryst. B33:335.Google Scholar
  138. Scouloudi, H., and Baker, E. N., 1978. X-ray crystallographic studies of seal myoglobin. J. Mol. Biol. 126:637.PubMedGoogle Scholar
  139. Smith, J. L., and Hendrickson, W. A., 1981. Iron-resolved anomalous phasing and local symmetry averaging in the structure solution of trimeric hemerythrin. Acta Cryst. A37:C–11.Google Scholar
  140. Smith, J. L., and Hendrickson, W. A., 1982. Resolved anomalous phase determination in macromolecular crystallography. In Computational Crystallography (D. Sayre, ed.), Oxford University Press, Oxford, pp. 209–222.Google Scholar
  141. Sowadski, J. M., Foster, B. A., and Wyckoff, H. W., 1981. Structure of alkaline phosphatase with zinc/magnesium cobalt or cadmium in the functional metal sites. J. Mol. Biol. 150:245.PubMedGoogle Scholar
  142. Sparks, R. A., 1982. Data collection with diffractometers. In Comutational Crystallography (D. Sayre, ed.), Oxford University Press, Oxford, pp. 1–18.Google Scholar
  143. Stallings, W. C., Pattridge, K. A., Powers, T. B., Fee, J. A., and Ludwig, M. L., 1981. Characterization of crystals of tetrameric manganese superoxide dismutase from Thermus thermophilus HB. J. Biol. Chem. 256:5857.PubMedGoogle Scholar
  144. Stallings, W. C., Powers, T. B., Pattridge, K. A., Fee, J. A., and Ludwig, M. L., 1983. Superoxide dismutase from Escherichia coli at 3.1 Å resolution-A structure unlike that of copper-zinc protein at both monomer and dimer levels. Proc. Natl. Acad. Sci. U.S.A. 80:3884.PubMedGoogle Scholar
  145. Stanford, R. H., Jr., and Corey, R. B., 1968. Determination of the structure of proteins by X-ray diffraction: Possible use of large heavy ions in phase determination. In Structural Chemistry and Molecular Biology (A. Rich and N. Davidson, eds.), Freeman, San Francisco, pp. 47–54.Google Scholar
  146. Stenkamp, R. E., Sieker, L. C., Jensen, L. H., and Sanders-Loehr, J., 1981. Structure of the binuclear iron complex in metazidohaemerythrin from Themiste Dyscritum at 2.2 Å resolution. Nature 291:263.Google Scholar
  147. Stout, C. D., Ghosh, D., Pattabhi, V., and Robbins, A. H., 1980. Iron-sulfur clusters in Azotobacter ferredoxin at 2.5 Å resolution. J. Biol. Chem. 255:1797.PubMedGoogle Scholar
  148. Strothkamp, K. G., Lehmann, J., and Lippard, S. J., 1978. Tetrakis (acetoxymercuri) methane: A polymetallic reagent for labelling sulfur in nucleic acids. Proc. Natl. Acad. Sci. U.S.A. 75:1181.PubMedGoogle Scholar
  149. Stuhrmann, H. B., and Notbohm, H., 1981. Configuration of the four iron atoms in dissolved human hemoglobin as studied by anomalous dispersion. Proc. Natl. Acad. Sci. U.S.A. 78:6216.PubMedGoogle Scholar
  150. Sussman, J. L., Holbrook, S. R., Church, G. M., and Kim, S.-H., 1977. A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters. Acta Cryst. A33:800.Google Scholar
  151. Sygusch, J., 1977. Minimum-variance Fourier coefficients from the isomorphous replacement method by least-squares analysis. Acta Cryst. A33:512.Google Scholar
  152. Szebenyi, D. M. E., Obendorf, S. K., and Moffat, K., 1981. Structure of vitamin D-de-pendent calcium-binding protein from bovine intestine. Nature 294:327.PubMedGoogle Scholar
  153. Tanier, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., and Richardson, D. C., 1982. Determination and analysis of the 2 A structure of copper, zinc superoxide dismutase. J. Mol. Biol. 160:181.Google Scholar
  154. Takano, T., Kallai, O. B., Swanson, R., and Dickerson, R. E., 1973. The structure of ferrocytochrome c at 2.45 Å resolution. J. Biol. Chem. 248:5234.PubMedGoogle Scholar
  155. Templeton, L. K., Templeton, D. H., Phizackerley, R. P., and Hodgson, K. O., 1981. L3-edge anomalous scattering by gadolinium and samarium measured at high resolution with synchrotron radiation. Acta Cryst. A38:74.Google Scholar
  156. Teo, B. K., 1980. Chemical applications of extended X-ray absorption fine structure (EX-AFS) spectroscopy. Acc. Chem. Res. 13:412.Google Scholar
  157. Timkovich, R., and Dickerson, R. E., 1976. The structure of Paracoccus denitrificans cytochrome c550. J. Biol. Chem. 251:4033.PubMedGoogle Scholar
  158. Tsukihara, T., Fukuyama, K., Tahara, H., Katsube, Y., Matsuura, Y., Tanaka, N., Kakudo, M., Wada, K., and Matsubara, H., 1978. X-ray analysis of ferredoxin from Spirulina platensis. J. Biochem. 84:1645.PubMedGoogle Scholar
  159. Ungaretti, L., Bolognesi, M., Cannillo, E., Oberti, R., and Rossi, G., 1978. The crystal structure of met-myoglobin from Aplysia limacina at 5 Å resolution. Acta Cryst. B34:3658.Google Scholar
  160. Vainshtein, B., Harutyunyan, E., Kuranova, I. P., Borisov, V. V., Sosfenov, N. I., Pav-lovsky, A. G., Grebenko, A. I., and Nebrasov, Y. B., 1978. X-ray structural investigation of leg-hemoglobin. 4. Determination of structure at 2.8 Å resolution. Krisrallo-grafiya 23:517.Google Scholar
  161. Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A. A., and Grebenko, A. I., 1981. Three-dimensional structure of the enzyme catalase. Nature 293:411PubMedGoogle Scholar
  162. van Schaick, E. J. M., Schutter, W. G., Gaykema, W. P. J., Schepman, A. M. H.. and Hol. W. G. J., 1982. Structure of Panulirus interruptus hemocyanin at 5 Å resolution. J. Mol. Biol. 158:457.PubMedGoogle Scholar
  163. Wang, B.-C., 1981. Protein structure determination by the single isomorphous replacement method with a phase selection and refinement process. Acta Cryst. A37:C–11.Google Scholar
  164. Ward, K. B., Hendrickson, W. A., and Klippenstein, G. L., 1975. Quaternary and tertiary structure of haemerythrin. Nature 257:818.PubMedGoogle Scholar
  165. Weber, P. C., Howard, A., Xuong, Ng. h., and Salemme, F. R., 1981. Crystallographic structure of Rhodospirillum molischianum ferricytochrome c at 2.5 Å resolution. J. Mol. Biol. 153:399.PubMedGoogle Scholar
  166. Wilson, A. J. C, 1942. Determination of absolute from relative X-ray intensity data. Nature 150:152.Google Scholar
  167. Wilson, A. J. C., 1950. Largest likely values for the reliability index. Acta Cryst. 3:397.Google Scholar
  168. Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366.PubMedGoogle Scholar
  169. Wright, W. V., 1982. Grip-An Interactive Computer Graphics System for Molecular Studies. In Computational Crystallography (D. Sayre, ed.), Oxford University Press, Oxford, pp. 294–302.Google Scholar
  170. Wyckoff, H. W., Doscher, M., Tsernoglou, D., Inagami, T., Johnson, L. N., Hardinan, K. D., Allewell, N. M., Kelly, D. M., and Richards, F. M., 1967. Design of a diffrac-tometer and flow cell system for X-ray analysis of crystalline proteins with applications to the crystal chemistry of ribonuclease-S. J. Mol. Biol. 27:563.PubMedGoogle Scholar
  171. Xuong, Ng.-h., Freer, S. T., Hamlin, R., Nielsen, C., and Vernon, W., 1978. The electron stationary picture method for high-speed measurement of reflection intensities from crystals with large unit cells. Acta Cryst. A34:289.Google Scholar
  172. Yamane, T., Weininger, M. S., Mortenson, L. E., and Rossmann, M. G., 1982. Molecular symmetry of the MoFe protein of nitrogenase. J. Biol. Chem. 257:1221.PubMedGoogle Scholar
  173. Zeppezauer, M., 1971. Formation of large crystals. Methods Enzymol. 22:253.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Wright
    • 1
  • Wayne A. Hendrickson
    • 2
  • Shigemasa Osaki
    • 3
  • Gordon T. James
    • 4
  1. 1.Southeastern Oklahoma State UniversityDurantUSA
  2. 2.Columbia UniversityNew YorkUSA
  3. 3.Hybritech, Inc.San DiegoUSA
  4. 4.Health Sciences CenterUniversity of ColoradoDenverUSA

Personalised recommendations