Electron Spin Resonance Spectroscopy (Esr)

  • John R. Wright
  • Wayne A. Hendrickson
  • Shigemasa Osaki
  • Gordon T. James
Part of the Biochemistry of the Elements book series (BOTE, volume 5)


Electron spin resonance (esr) (also known as electron paramagnetic resonance, epr) has been successfully applied to biological problems since the late 1950s (Commoner et al., 1957). The method compares closely with nmr in being essentially nondestructive since the measuring wavelengths fall within the microwave portion of the spectrum, corresponding to photon energies, hv, much too weak to break chemical bonds. A magnetic field must be applied in order to detect esr phenomena, but in general, the field is less intense than for nmr (see Chapter 2). The distinctive advantage of esr (compared with nmr) is its sensitivity, permitting measurements at very low concentrations. In some cases this can be a disadvantage, i.e., interfering impurities may be confused with the entity one is attempting to observe (see an example in the last paragraph of Section


Electron Spin Resonance Unpaired Electron Spin Label Paramagnetic Center Hyperfine Coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albracht, S. P. J., Graf, E. G., and Thauer, R. K., 1982. The epr properties of nickel in hydrogenase from Methanobacterium thermoautotrophicum, FEBS Lett. 140:311.PubMedCrossRefGoogle Scholar
  2. Atherton, N. M., and Weissman, S. I., 1961. Association between sodium and napthalenide ions, J. Am. Chem. Soc. 83:1330.CrossRefGoogle Scholar
  3. Barkhuijsen, H., deBeer, R., deWild, E. L., and vanOrmondt, D., 1982. Measurement of hyperfine interactions with electron spin-echo spectroscopy. Application to F-centers in KC1, J. Magn. Reson. 50:299.Google Scholar
  4. Bartl, A., and Sommer, K.-H., 1984. Entwicklung eines Simuiationsprogramms für ESR-Spektren und dessen Anwendung fur die Spektrensimulation 33S-markierter 1,2,3-Dithiazolyle, J. Prakt. Chem. 326:165.CrossRefGoogle Scholar
  5. Bereman, R. D., and Kosman, D. J., 1977. Stereoelectronic properties of metalloenzymes. 5. Identification and assignment of ligand hyperfine splittings in the electron spin resonance spectrum of galactose oxidase, J. Am. Chem. Soc. 99:7322.PubMedCrossRefGoogle Scholar
  6. Bereman, R. D., Wang, F. T., Najdzionek, J., and Braitsch, D. M., 1976. Stereoelectronic properties of metalloenzymes. 4. Bis(imidotetraphenyldithiophosphino-S,S’)copper(II), J. Am. Chem. Soc. 98:7266.PubMedCrossRefGoogle Scholar
  7. Birker, P. J. M. W. L., and Freeman, H. C., 1977. Structure, properties and function of a copper(I)-copper(II) complex of D-penicillamine: pentathallium(I)-µ8-chloro-dodeca-(D-penicillaminato)-octacuprate(I) hexacupuprate (II) n-hydrate, J. Am. Chem. Soc. 99:6890.PubMedCrossRefGoogle Scholar
  8. Bittman, R., Sakaki, T., Tsuji, A., Devaux, P. E., and Ohnishi, S., 1984. Spin-label studies of the oligomeric structure of band-3 protein in erythrocyte membranes and in reconstituted systems, Biochim. Biophys. Acta 769:85.PubMedCrossRefGoogle Scholar
  9. Blow, D. M., and Steitz, T. A., 1970. X-Ray diffraction studies of enzymes, Annu. Rev. Biochem. 39:63.PubMedCrossRefGoogle Scholar
  10. Blumberg, W. E., 1966. Some aspects of models of copper complexes, in Biochemistry of Copper (J. Peisach, P. Aisen, and W. E. Blumberg, eds.), Academic Press, New York, p. 49.Google Scholar
  11. Blumberg, W. E., 1981. The study of hemoglobin by electron paramagnetic resonance spectroscopy, Methods Enzymol. 76:312.PubMedCrossRefGoogle Scholar
  12. Bramley, R., and Strach, S. J., 1983. Electron paramagnetic resonance spectroscopy at zero magnetic field, Chem. Rev. 83:49.CrossRefGoogle Scholar
  13. Brophy, P. L., Horvath, L. I., and Marsh, D., 1984. Stoichiometry and specificity of lipid-protein interaction with myelin proteolipid protein studied by spin-label electron spin resonance, Biochemistry 23:860.PubMedCrossRefGoogle Scholar
  14. Buchachenko, A. L., and Wasserman, A. M., 1982. The structure and dynamics of mac-romolecules in solutions as studied by esr and nmr techniques, Pure Appl. Chem. 54:507.CrossRefGoogle Scholar
  15. Cannistraro, S., and Sacchetti, F., 1984. Small angle neutron scattering and spin labeling of human ceruloplasmin, Phys. Lett. A 101:175.CrossRefGoogle Scholar
  16. Christner, J. A., Munck, E., Janick, P. A.,andSiegel, L. M., 1981. Mössbauer spectroscopic studies of Escherichia coli sulfite reductase; evidence for coupling between the siroheme and Fe4S4 cluster prosthetic groups, J. Biol. Chem. 256:2098.PubMedGoogle Scholar
  17. Coan, C., 1983. Sensitivity of spin-labeled sarcoplasmic reticulum to the phosphorylation state of the catalytic site in aqueous media and dimethyl sulfoxide, Biochemistry 22:5826.PubMedCrossRefGoogle Scholar
  18. Coleman, P. M., Freeman, H. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M., and Venktappa, M. P., 1978. X-ray crystal structure analysis of plastocyanin at 2.7 A resolution, Nature 272:319.CrossRefGoogle Scholar
  19. Commoner, B., 1961. Electron spin resonance studies of photosynthetic systems, in Light and Life (W. D. McElroy, and B. Glass, eds.), Johns Hopkins Press, Baltimore, Maryland, pp. 356–377.Google Scholar
  20. Commoner, B., Heise, J. J., Lippincott, B. B., Norberg, R. E., Passonneau, J. V., and Townsend, J., 1957. Biological activity of free radicals, Science 126:57.PubMedCrossRefGoogle Scholar
  21. Dorio, M. M., and Freed, J. H., 1979. Multiple Electron Resonance Spectroscopy ,Plenum Publishing Corp., New York.CrossRefGoogle Scholar
  22. Dugas, H., 1977. Spin-labeled nucleic acids, Acc. Chem. Res. 10:47.CrossRefGoogle Scholar
  23. Eggleton, G. L., Jung, G., and Wright, J. R., 1978. The 1H-nmr spectra of mixed valence complexes of copper derivatives of l-amino-2,2-dimethyl-2-mercaptoethane, Bioinorg. Chem. 8:173.PubMedCrossRefGoogle Scholar
  24. Forman, A., Davis, M. S., Fujita, I., Hanson, L. K., Smith, K. M., and Fajer, J., 1981. Mechanisms of energy transduction in plant photosynthesis: esr, ENDOR and MO’s of the primary acceptors, Israel J. Chem. 21:265.Google Scholar
  25. Giordano, R. S., and Bereman, R. D., 1974. Stereoelectronic properties of metalloenzymes. I. A comparison of the coordination of copper(II) in galactose oxidase and a model system, N,N-ethylenebis(trifluoroacetylacetoniminato)copper(II), J. Am. Chem. Soc. 96:1019.PubMedCrossRefGoogle Scholar
  26. Graceffa, P., and Lehrer, S. S., 1984. Dynamic equilibrium between the two conformational states of spin-labeled tropomyosin, Biochemistry 23:2606.PubMedCrossRefGoogle Scholar
  27. Graf, E. G., and Thauer, R. K., 1981. Hydrogenase from Methanobacterium thermoau-totrophicum ,a nickel-containing enzyme, FEBS Lett. 136:165.CrossRefGoogle Scholar
  28. Haberditzl, W., 1973. Magnetochemistry: methods of measuring static magnetic suceptibility and their applications in biochemistry, in Experimental Methods in Biophysical Chemistry (C. Nicolau, ed.), John Wiley and Sons, New York, Chapter 8, pp. 351–392.Google Scholar
  29. Haffner, P. H., Goodsaid-Zalduondo, F., and Coleman, J. E., 1974. Electron spin resonance of manganese(II)-substituted zinc(II) metalloenzymes, J. Biol. Chem. 249:6693.PubMedGoogle Scholar
  30. Hager, L. P., Doubek, D. L., Silverstein, R. M., Hargis, J. H., and Martin, J. C, 1972. Chloroperoxidase. IX. The structure of compound I, J. Am. Chem. Soc. 94:4364.PubMedCrossRefGoogle Scholar
  31. Hansson, O., and Andreasson, L., 1982. Epr-detectable magnetically interacting manganese ions in the photosynthetic oxygen-evolving system after continuous illumination, Biochim. Biophys. Acta. 679:261.CrossRefGoogle Scholar
  32. Hoffman, B. M., and Petering, D. H., 1970, Coboglobins: Oxygen-carrying cobalt-reconstituted hemoglobin and myoglobin, Proc. Natl. Acad. Sci. U.S.A. 67:637.PubMedCrossRefGoogle Scholar
  33. Hoffman, B. M., Roberts, J. E., and Orme-Johnson, W. H., 1982a. 95Mo and 1H ENDOR spectroscopy of the nitrogenase MoFe protein, J. Am. Chem. Soc. 104:860.CrossRefGoogle Scholar
  34. Hoffman, B. M., Venters R. A., and Roberts, J. E., 1982b. 57Fe ENDOR of the nitrogenase MoFe protein, J. Am. Chem. Soc. 104:4711.CrossRefGoogle Scholar
  35. Ingram, D. J. E., 1969. Biological and Biochemical Applications of Electron Spin Resonance ,Hilger, London.Google Scholar
  36. Janick, P. A., and Siegel, L. M., 1982. Electron paramagnetic resonance and optical spectroscopic evidence for interaction between siroheme and Fe4S4 prosthetic groups in Escherichia coli sulfite reductase hemoprotein subunit, Biochemistry 21:3538.PubMedCrossRefGoogle Scholar
  37. Keana, J. F. W., 1978. Newer aspects of the synthesis and chemistry of nitroxide spin labels, Chem. Rev. 78:37.CrossRefGoogle Scholar
  38. Kennedy, F. S., Hill, H. A. O., Kaden,T. A., and Vallee, B. L., 1972. Electron paramagnetic resonance spectra of some active cobalt(II) substituted metalloenzymes and other cobalt(II) complexes, Biochem. Biophys. Research Commun. 48:1533.CrossRefGoogle Scholar
  39. Khanna, R., Rajan, S., Steinback, K. E., Bose, S., Govindjee, A., and Gutosky, H. S., 1981. Esr and nmr studies on the effects of magnesium ion on chloroplast manganese, Israel J. Chem. 21:291.Google Scholar
  40. Knowles, P. F., Watts, A., and Marsh, D., 1981. Spin-label studies of head-group specificity in the interaction of phospholipids with yeast cytochrome oxidase, Biochemistry 20:5888.PubMedCrossRefGoogle Scholar
  41. Kohl, D. H., Wright, J. R., and Weissman, M., 1969. Electron spin resonance studies of free radicals derived from plastoquinone, - and -tocopherol and their relation to free radicals observed in photosynthetic materials, Biochim. Biophys. Acta 180:536.PubMedCrossRefGoogle Scholar
  42. Kroneck, P., Nauman, C., and Hemmerich, P., 1971. Formation and properties of binuclear cupric mercaptide five-membered chelates, Inorg. Nucl. Chem. Lett. 7:659.CrossRefGoogle Scholar
  43. Krueger, R. J., and Siegel, L. M., 1982. Spinach siroheme enzymes: isolation and characterization of ferredoxin sulfite reductase and comparison of properties with ferredoxin nitrite reductase, Biochemistry 21:2892.PubMedCrossRefGoogle Scholar
  44. Lai, C., and Tooney, N. M., 1984. Electron spin resonance spin label studies of plasma fibronectin: Effect of temperature, Arch. Biochem. Biophys. 228:465.PubMedCrossRefGoogle Scholar
  45. Lai, C., Hopwood, L. E., Hyde, J. S., and Lukiewicz, S., 1982. Esr studies of O2 uptake by Chinese hamster ovary cells during the cell cycle, Proc. Natl. Acad. Sci. U.S.A. 79:1166.PubMedCrossRefGoogle Scholar
  46. Mims, W. B., and Peisach, J. 1981. Electron spin echo spectroscopy and the study of metalloproteins, Biol. Magn. Reson. 3:213.CrossRefGoogle Scholar
  47. More, K. M., Eaton, G. R., and Eaton, S. S., 1984. Metal-nitroxyl interactions. 35. Conformational effects on spin-spin interaction in spin-labeled copper salicylaldimines, Inorg. Chem. 23:1165.CrossRefGoogle Scholar
  48. Narayana, P. A., and Kevan, L., 1982. Fourier transformation of electron spin-echo modulation: Application to solvent shell geometry of O2_ in dimethyl sulfoxide, J. Magn. Reson. 46:84.Google Scholar
  49. Niccolai, N., Tiezzi, E., and Valensin, G., 1982. Manganese(II) as magnetic relaxation probe in the study of biomechanisms and of biomolecules, Chem. Rev. 82:359.CrossRefGoogle Scholar
  50. Ohno, K., 1982. Esr imaging: A deconvolution method for hyperfine patterns, J. Magn. Reson. 50:145.Google Scholar
  51. Pake, G. E., 1962. Paramagnetic Resonance, an Introductory Monograph ,W. A. Benjamin, Inc., New York.Google Scholar
  52. Poole, C. P., 1982. Electron Spin Resonance, A Comprehensive Treastise on Experimental Techniques ,2nd ed., John Wiley and Sons, New York.Google Scholar
  53. Roberts, J. E., Hoffman, B. M., Rutter, R., and Hager, L. P., 1981. 17O-ENDOR of horseradish peroxidase compound I, J. Am. Chem. Soc. 103:7654.CrossRefGoogle Scholar
  54. Schwarz, K., and Merz, W., 1961. A physiological role of chromium(III) in glucose utilization (glucose tolerance factor), Fed. Proc. 20:111.PubMedGoogle Scholar
  55. Sugiura, Y., and Tanaka, H., 1970. Sulfur-containing chelating agents, XXV. Chelate formation of penicillamine and its related compounds with copper, Chem. Pharm. Bull. 18:368.CrossRefGoogle Scholar
  56. van Kempen, H., Perenboom, J. A. A. J., and Birker, P. J. M. W. L., 1981. Ferromagnetic exchange coupling in polynuclear copper(I)-copper (II) complexes with penicillamine and related ligands, Inorg. Chem. 20:917.CrossRefGoogle Scholar
  57. van Vleck, J. H., 1939. The Jahn-Teller effect and crystalline Stark splitting for clusters of the form XY6, J. Chem. Phys. 7:72.CrossRefGoogle Scholar
  58. Wang, Z.-C., and Watt, G. D., 1984. H2-uptake activity of the MoFe protein component of Azotobacter vinelandii nitrogenase, Proc. Natl. Acad. Sci. U.S.A. 81:376.PubMedCrossRefGoogle Scholar
  59. Winkler, M. E., and Bereman, R. D., 1980. Stereoelectronic properties of metalloenzymes. 6. Effects of anions and ferricyanide on the copper(II) site of the histidine and the tryptophan modified forms of galactose oxidase., J. Am. Chem. Soc. 102:6244.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Wright
    • 1
  • Wayne A. Hendrickson
    • 2
  • Shigemasa Osaki
    • 3
  • Gordon T. James
    • 4
  1. 1.Southeastern Oklahoma State UniversityDurantUSA
  2. 2.Columbia UniversityNew YorkUSA
  3. 3.Hybritech, Inc.San DiegoUSA
  4. 4.Health Sciences CenterUniversity of ColoradoDenverUSA

Personalised recommendations