Nuclear Quadrupole Resonance (Nqr)

  • John R. Wright
  • Wayne A. Hendrickson
  • Shigemasa Osaki
  • Gordon T. James
Part of the Biochemistry of the Elements book series (BOTE, volume 5)


This brief chapter has been included in the anticipation that biological applications of nqr spectroscopy will increase as time passes. As in the other spectroscopic methods based on nuclear properties, nqr is able to probe the electronic environment at a specific type of nucleus (Smith, 1978; Semin et al., 1975; Schultz, 1970). It is a solid-state phenomenon and thus has much in common with the Mössbauer effect, while biological nmr is oriented largely toward the liquid and liquid-crystalline states. To date, most nqr investigations have dealt with fairly simple substances. The method is generally applicable to the study of a variety of elements (Biryukov and Vorokonov, 1972), and in spite of certain limitations, biological applications may be expected to increase. For the present, however, small molecules are more appropriate subjects for nqr.


Electric Field Gradient Nuclear Quadrupole Resonance Double Resonance Nitrogen Mustard Asymmetry Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arimondo, E., Glorieux, P., and Takeshi, O., 1978. Radiofrequency spectroscopy inside a laser cavity: “Pure” nuclear quadrupole resonance of gaseous CH3I, Phys. Rev. A. 17:1375.CrossRefGoogle Scholar
  2. Ayscough, P. B., 1967. Electron Spin Resonance in Chemistry ,Methuen &Co. Ltd., London, p. 102.Google Scholar
  3. Babushkina, T. A., 1977. Use of nuclear quadrupole resonance in biophysical studies, Nucl. Quadrupole Reson. (Russian) 2:3.Google Scholar
  4. Biryukov, I. P., and Vorokonov, M. G., 1972. Tables of Nuclear Quadrupole Resonance Frequencies ,Halsted Press, New York.Google Scholar
  5. Borsa, F., and Rigamonti, A., 1979. Nmr and Nqr in fluids, paramagnets and crystals, in Magnetic Resonance of Phase Transitions (F. J. Owens, ed.), Academic Press, New York.Google Scholar
  6. Buess, M. L., Bray, P. J., and Sheppard, D. W., 1984. 14N and 35C1 nuclear quadrupole resonance data for nitrogen mustards: Attempted correlations with chemical and biological activities, Org. Magn. Reson. 22:67.CrossRefGoogle Scholar
  7. Cheng, C. P., and Brown, T. L., 1979. Oxygen-17 nuclear quadrupole double resonance spectroscopy. 1. Introduction. Results for organic carbonyl compounds, J. Am. Chem. Soc. 101:2327.CrossRefGoogle Scholar
  8. Das, T. P., and Hahn, E. L., 1958. Nuclear Quadrupole Resonance Spectroscopy ,Academic Press, New York.Google Scholar
  9. DeVoe, R. G., Sazabo, A., Rand, S. C., and Brewer, R. G., 1979. Ultraslow optical dephasing of LaF3:Pr3 + , Phys. Rev. Lett. 42:1560.CrossRefGoogle Scholar
  10. Guibe, L., and Montabonel, M. C., 1978. Temperature dependence of nqr frequencies in copper(II) bromide and magnesium bromide etherate, J. Magn. Reson. 31:419.Google Scholar
  11. Kawamori, A., 1978. Exchange interaction in copper acetate monohydrate studied by nuclear quadrupole resonance, J. Magn. Reson. 31:423.Google Scholar
  12. Liczwek, D. L., Belford, R. L., Pilbrow, J. R., and Hyde, J. S., 1983. Elevatio\n of copper nuclear quadrupole coupling in thio complexes by complexation of the coordination sphere, J. Phys. Chem. 87:2509.CrossRefGoogle Scholar
  13. Lutz, O., and Oehler, H., 1978. 135Ba and 137Ba Fourier transform nmr and nqr studies, Z. Physik. A. 288:11.CrossRefGoogle Scholar
  14. Ramachandran, R., and Narasimhan, P. T., 1983. A coherent nuclear quadrupole pulse and double resonance spectrometer, J. Phys. E. 16:643.CrossRefGoogle Scholar
  15. Redfield, A. G., 1963. Pure nuclear electric quadrupole resonance in impure copper, Phys. Rev. 130:589.CrossRefGoogle Scholar
  16. Schramm, S., and Oldfield, E., 1983. Nuclear magnetic resonance studies of amino acids in proteins. Rotational correlation times of proteins by deuterium nuclear magnetic resonance spectroscopy, Biochemistry 22:2908.PubMedCrossRefGoogle Scholar
  17. Schultz, H. D., 1970. Nuclear quadrupole resonance spectroscopy in Inorganic Chemistry, Vol. I (C. N. R. Rao and J. R. Ferraro, eds.), Academic Press, New York.Google Scholar
  18. Semin, G. K., Babushkina, T. A., and Yakobson, G. G., 1975. Nuclear Quadrupole Resonance in Chemistry (English translation), Halsted Press, New York.Google Scholar
  19. Slusher, E., and Hahn, E. L., 1968. Sensitive detection of nuclear quadrupole interactions in solids, Phys. Rev. 166:332.CrossRefGoogle Scholar
  20. Smith, J. A. S., 1971a. Nuclear quadrupole resonance spectroscopy, Part Two. Instruments, J. Chem. Ed. 48:A77.Google Scholar
  21. Smith, J. A. S., 1971b. Nuclear quadrupole resonance spectroscopy, Part Three. Chemical applications, J. Chem. Ed. 48:A243.CrossRefGoogle Scholar
  22. Smith, J. A. S., 1978, ed. Advances in Nuclear Quadrupole Resonance ,Vols. 1–3, Heyden Press, Philadelphia.Google Scholar
  23. Smith, P. W., and Stoessiger, R., 1978. Nuclear quadrupole resonance studies of compounds of the type A2(I)M(III)C15(H2O), J. Magn. Reson. 31:431.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Wright
    • 1
  • Wayne A. Hendrickson
    • 2
  • Shigemasa Osaki
    • 3
  • Gordon T. James
    • 4
  1. 1.Southeastern Oklahoma State UniversityDurantUSA
  2. 2.Columbia UniversityNew YorkUSA
  3. 3.Hybritech, Inc.San DiegoUSA
  4. 4.Health Sciences CenterUniversity of ColoradoDenverUSA

Personalised recommendations