Nuclear Magnetic Resonance (Nmr)

  • John R. Wright
  • Wayne A. Hendrickson
  • Shigemasa Osaki
  • Gordon T. James
Part of the Biochemistry of the Elements book series (BOTE, volume 5)


The extent of this chapter parallels the widespread acceptance of nmr as a tool for biochemical investigation (see the series Biological Magnetic Resonance by Berliner and Reuben, 1978; Wasson, 1984; James, 1975; Dwek, 1973). For example, if one examines current issues of a journal such as Biochemistry it is scarcely possible to find one which does not contain at least one biological nmr paper. The spectroscopic method described here is known as high-resolution nmr, and as such is a powerful tool for the elucidation of chemical structures in solution. More recently it was discovered that high-resolution spectra may also be obtained from solids and liquid crystals, something that was not anticipated in the early period. Thus, the method is particularly applicable to cellular components, which range from dissolved entities such as proteins and intermediary metabolites to more condensed phases of the type made up of phospholipids and sterols in biological membranes.


Nuclear Magnetic Resonance Spectrum Paramagnetic Center Nuclear Overhauser Effect Radio Frequency Pulse Quadrupolar Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam, A., 1961. The Principles of Nuclear Magnetism ,Oxford University Press, London.Google Scholar
  2. Abraham, R. J., and Loftus, P., 1978. Proton and Carbon-13 NMR Spectroscopy: An Integrated Approach ,Heyden &Son, London.Google Scholar
  3. Ackerman, J. J. H., and Maciel, G. E., 1976. Improved broadband NMR spectrometer scheme, J. Magn. Reson. 23:67.Google Scholar
  4. Anderson, C. F., Record, M. T., and Hart, P. A., 1978. Sodium-23 NMR studies of cation-DNA interactions, Biophys. Chem. 7:301.PubMedCrossRefGoogle Scholar
  5. Anvarhusein, I., and Rabenstein, D. L., 1979. The Incorporation of 2H-glycine into the glutathione of intact human erythrocytes studied by proton spin-echo Fourier transform NMR, FEBS Lett. 106:325.CrossRefGoogle Scholar
  6. Aristarkhov, V. M., Piruzyan, L. A., and Tsybyshev, V. P., 1977. Effect of a permanent magnetic field on protein solutions, Izv. Akad. Nauk. SSSR. Ser. Biol. 1977:44.Google Scholar
  7. Armitage, I. M., Hall, L., Marshall, A. G., and Werbelow, L. G., 1973. Use of lanthanide nuclear magnetic resonance shift reagents in determination of molecular configuration, J. Am. Chem. Soc. 95:1437.CrossRefGoogle Scholar
  8. Armitage, I. M., Uiterkamp, A. J. M. S., Chlebowski, J. F., and Coleman, J. E., 1978. 113Cd NMR as a probe of the active sites of metalloenzymes, J. Magn. Reson. 29:375.Google Scholar
  9. Asakura, T., Watanabe, Y., Uchida, A., and Minagawa, H., 1984. NMR of silk fibroin. 2. l3C-nmr study of the chain dynamics and solution structure of Bombyx mori silk fibroin, Macromolecules 17:1075.CrossRefGoogle Scholar
  10. Aue, W. P., Bartholdi, E., and Ernst, R. R., 1976. Two-dimensional spectroscopy. Application to nuclear magnetic resonance, J. Chem. Phys. 64:2229.CrossRefGoogle Scholar
  11. Axenrod, T., and Webb, G. A., 1974. Nuclear Magnetic Resonance Spectroscopy of Nuclei Other Than Protons. Wiley-Interscience, New York.Google Scholar
  12. Baldwin, G. S., Galdes, A., Hill, A. O., Smith, B. E., Waley, S. G., and Abraham, E. P., 1978. Histidine residues as zinc ligands in -lactamase II, Biochem. J. 175:441.PubMedGoogle Scholar
  13. Bargon, J., Fischer, H., and Johnsen, U., 1967. Kernresonanz-Emissionslinien wahrend rascher Radikalreaktionen, Z. Naturforsch. 22a: 1551.Google Scholar
  14. Bax, A., Freeman, R., and Frenkiel, T. A., 1981. An NMR technique for tracing out the carbon skeleton of an organic molecule, J. Am. Chem. Soc. 103:2102.CrossRefGoogle Scholar
  15. Bayne, R. A., Smythe, G. A., and Caughey, W. S., 1971. Epr and Nmr spectra of a heme A-copper complex isolated from bovine heart muscle, in Probes of the Structure and Function of Macromolecules in Membranes ,Proceedings (B. Chance, ed.), Academic Press, New York.Google Scholar
  16. Becker, E., 1980. High Resolution NMR, Theory and Chemical Applications ,2nd ed., Academic Press, New York.Google Scholar
  17. Beem, K. M., Richardson, D. C., and Rajagopalan, K. V., 1977. Metal sites of copper-zinc superoxide dismutase, Biochemistry ,16:1930.PubMedCrossRefGoogle Scholar
  18. Bendall, M. R., and Lowe, G., 1976. Fluorine-19 nmr probes for proteins: 5-trifluoro-methylmercuri-papain, FEBS Lett. ,72:231.PubMedCrossRefGoogle Scholar
  19. Bendel, P., Laub, O., and James, T. L., 1982. Molecular motions of supercoiled and circular DNA. A P-31 nmr study, J. Am. Chem. Soc. 104:6748.CrossRefGoogle Scholar
  20. Berendsen, H. J. C., and Edzes, H. T., 1973. The observation and general interpretation of sodium magnetic resonance in biological material, Ann. N.Y. Acad. Sci. 204:459.PubMedCrossRefGoogle Scholar
  21. Berger, N. A., and Eichhorn, G. L., 1971. Interaction of metal ions with polynucleotides and related compounds. XV. Nuclear magnetic resonance studies of the binding of Cu(II) to nucleotides and polynucleotides, Biochemistry 10:1857.PubMedCrossRefGoogle Scholar
  22. Berlin, H. M., 1977. Designs of Active Filters With Experiments ,Howard W. Sams and Co., Inc., Indianapolis, Indiana.Google Scholar
  23. Berliner, L. J., and Reuben, J. (eds.), 1978-. Biological Magnetic Resonance ,Volume 1 to present, Plenum Publishing Corp., New York.Google Scholar
  24. Binsch, G., 1969. A unified theory of exchange effects on nuclear magnetic resonance line shapes, J. Am. Chem. Soc. 91:1304.CrossRefGoogle Scholar
  25. Birdsall, W. J., Levine, B. A., Williams, R. J. P., Fulmer, C. S., and Wasserman, R. H., 1979. Proton-magnetic-resonance spectral studies of the intestinal calcium binding protein, Biochem. Soc. Trans. 7:702.PubMedGoogle Scholar
  26. Bloembergen, N., 1957. Proton relaxation times in paramagnetic solutions, J. Chem. Phys. 27:572.CrossRefGoogle Scholar
  27. Borsa, F., and Rigamonti, A., 1979. Nmr and nqr in fluids, paramagnets and crystals, in Magnetic Resonance of Phase Transitions ,(F. J. Owens, ed.), Academic Press, New York, pp. 79–169.Google Scholar
  28. Boyd, J., Moore, G. R., and Williams, G., 1984. Correlation of proton chemical shifts in proteins using two-dimensional exchange correlated spectroscopy, J. Magn. Reson. 58:511.Google Scholar
  29. Brashure, E. B., Henderson, T. O., Glonek, T., Pattnaik, N. M., and Scann, A. M., 1978. Action of -phospholipase A2 on human serum high density lipoprotein-3: Kinetic study of the reaction by 31P-nuclear magnetic resonance spectroscopy, Biochemistry 17:3934.CrossRefGoogle Scholar
  30. Braun, W., Wider. G., Lee, K. H., and Wuthrich, K., 1983. Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance, J. Mol. Biol. 169:921.PubMedCrossRefGoogle Scholar
  31. Breen, J., Bertoli, D. A., and Dadok, J., 1974. Proton magnetic resonance studies of human adult hemoglobin in water, Biophys. Chem. 2:49.PubMedCrossRefGoogle Scholar
  32. Brevard, C., and Kintzinger, J. P., 1978. Deuterium and tritium in nmr, in NMR and the Periodic Table (R. K. Harris and B. E. Mann, eds.), Academic Press, London, p. 107.Google Scholar
  33. Briggs, R. W., and Hinton, J. F., 1978a. A thallium-205 nuclear magnetic resonance investigation of the thallium (I)-valinomycin complex, J. Magn. Reson. 32:155.Google Scholar
  34. Briggs, R. W., and Hinton, J. F., 1978b. Thallium-205 and proton nuclear magnetic resonance investigation of the complexation of thallium by the ionophores monesin and nigericin, Biochemistry 17:5576.PubMedCrossRefGoogle Scholar
  35. Brown, C. E., Katz, J. J., and Shemin, D., 1972. The biosynthesis of vitamin B12: A study by 13C magnetic resonance spectroscopy, Proc. Natl. Acad. Sci. U.S.A. 69:2585.PubMedCrossRefGoogle Scholar
  36. Brownell, G. L., Budinger, T. F., Lauterbur, P. C., and McGeer, P. L., 1982. Positron tomography and nuclear magnetic resonance imaging, Science 215:619.PubMedCrossRefGoogle Scholar
  37. Bryant, R. G., 1969. Nuclear magnetic resonance study of calcium-43, J. Am. Chem. Soc. 91:1870.CrossRefGoogle Scholar
  38. Bubnov, N. N., Bilevich, K. A., Polyakova, L. A., and Okhlobystin, O. Yu., 1972. Electron transfer as the first step in electrophilic aromatic substitution, J. Chem. Soc., Chem. Commun. 1972:1058.CrossRefGoogle Scholar
  39. Burnett, L. J., and Muller, B. H., 1971. Deuteron quadrupole coupling constants in three solid deuterated paraffin hydrocarbons: C2D6; C4D10; C6D14, J. Chem. Phys. 55:5829.CrossRefGoogle Scholar
  40. Bushweller, C. H., Beall, H., Grace, M., Dewkett, W. J., and Bilofsky, H. S., 1971. Temperature dependence of the proton nuclear magnetic resonance spectra of copper(l) borane complexes, B3H8-salts and icosahedral carboranes. Quadrupole-induced spin decoupling. Fluxional behavior, J. Am. Chem. Soc. 93:2145.CrossRefGoogle Scholar
  41. Bycroft, B. W., 1972. Crystal structure of viomycin, a tuberculostatic antibiotic, J. Chem. Soc., Chem. Commun. 1972:660.CrossRefGoogle Scholar
  42. Campbell, I. D., Dobson, C. M., Williams, R. J. P., and Xavier, A. V., 1973. Resolution enhancement of protein pmr spectra using the difference between a broadened and a normal spectrum, J. Magn. Reson. 11:172.Google Scholar
  43. Campbell, I. D., Dobson, C. M., Moore, G. R., Perkins, S. J., and Williams, R. J. P., 1976. Temperature dependent molecular motion of a tyrosine residue of ferrocytochrome-C, FEBS Lett. 70:96.PubMedCrossRefGoogle Scholar
  44. Campbell, I. D., Dobson, C. M., Ratcliffe, R. G., and Williams, R. J. P., 1978. A method for the accurate measurement of proton spin-spin coupling constants in large molecules, J. Magn. Reson. 31:341.Google Scholar
  45. Canet, D., Goulon-Ginet, G., and Marchal, J. P., 1977. Accurate determination of parameters for l7O in natural abundance by Fourier transform nmr, J. Magn. Reson. 25:397. (Correction for the original article: J. Magn. Reson. 22:537.)Google Scholar
  46. Canet, D., Brondeau, J., Marchal, J. P., and Robin-Lherbier, B., 1982. A convenient method of observing relatively broad nuclear magnetic resonances in the Fourier transform mode, Org. Magn. Reson. 20:51.CrossRefGoogle Scholar
  47. Carlson, W. D., 1976. X-ray Diffraction Studies of Bovine Pancreatic Ribonuclease-S and E. coli Alkaline Phosphatase, Ph.D. dissertation, Yale University.Google Scholar
  48. Carr, H. Y., and Purcell, E. M., 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94:630.CrossRefGoogle Scholar
  49. Cass, A. E. G., Hill, H. A. O., Smith, B. E., Bannister, J. V., and Bannister, W. H., 1977a. Investigation of the structure of bovine erythrocyte superoxide dismutase by 1H-nuclear magnetic resonance spectroscopy, Biochemistry 16:3061.PubMedCrossRefGoogle Scholar
  50. Cass, A. E. G., Hill, H. A. O., and Smith, B. E., 1977b. The investigation of the proton magnetic resonance spectra of some copper proteins, in Structure and Function of Hemocyanin (Proceedings of the Fifth European Molecular Biology International Workshop) (J. V. Bannister, ed.), Springer-Verlag, Berlin, p. 128.Google Scholar
  51. Ceraso, J. M., and Dye, J. L., 1974. Sodium-23 nmr spectrum of the sodium anion, J. Chem. Phys. 61:1585.CrossRefGoogle Scholar
  52. Chan, T., and Markley, J. L., 1983. Nuclear magnetic resonance studies of two-iron-two-sulfur ferredoxins. 3. Heteronuclear (13C,1H) two-dimensional nmr spectra, 13C peak assignments, and 13C relaxation measurements, Biochemistry 22:5996.CrossRefGoogle Scholar
  53. Chan, T., Ulrich, E. L., and Markley, J. L., 1983. Nuclear magnetic resonance studies of two-iron-two-sulfur ferredoxins. 4. Interactions with redox partners, Biochemistry 22:6002.CrossRefGoogle Scholar
  54. Chapman, D., 1967. Liquid crystalline nature of phospholipids, in Advances in Chemistry Series, No. 63, Ordered Fluids and Liquid Crystals (R. F. Gould, ed.), American Chemical Society Publications, Washington, D.C., p. 163.Google Scholar
  55. Chapman, G. E., Abercrombie, B. D., Cary, P. D., and Bradbury, E. M., 1978. The measurement of small nuclear Overhauser effects in the proton spectra of proteins, and their application to lysozyme, J. Magn. Reson. 31:459.Google Scholar
  56. Chenoweth, M. B., 1949. Monofluoroacetic acid and related compounds, Pharmacol. Rev. 1:383.Google Scholar
  57. Chlebowski, J. F., and Coleman, J. E., 1976. Zinc and its role in enzymes, in Metal Ions in Biological Systems ,Vol. 6 (H. Sigel, ed.), Marcel-Dekker, New York, pp. 1–140.Google Scholar
  58. Civan, M. M., and Shporer, M., 1978. Nmr of sodium-23 and potassium-39 in biological systems, in Biological Magnetic Resonance ,Vol. 1 (L. J. Berliner and J. Reuben, eds.), Plenum Publishing Corp., New York, pp. 1–32.Google Scholar
  59. Civan, M. M., McDonald, G. G., Pring, M., and Shporer, M., 1976. Pulsed nuclear magnetic resonance study of 39K in frog striated muscle, Biophys. J. 16:1385.PubMedCrossRefGoogle Scholar
  60. Clerc, T., Pretsch, E., and Sternhell, S., 1973. Methoden der Analyse in der Chemie; Band 16: 13C-Kernresonanzspektroskopie (F. Hecht, R. Kaiser, E. Pungor, and W. Simon, eds.), Akademische Verlagsgesellschaft, Frankfurt am Main.Google Scholar
  61. Cohen, J. S., 1973. Nuclear magnetic resonance investigations of biomolecules, in Experimental Methods in Biophysical Chemistry (C. Nicolau, ed.), John Wiley and Sons, New York.Google Scholar
  62. Cohn, M., and Rao, B. D. N., 1979. Phosphorous nmr studies of enzymic reactions, Bull. Magn. Reson. 1:38.Google Scholar
  63. Colman, P. M., Weaver, L. H., and Matthews, B. W., 1972. Rare earths as isomorphous calcium replacements for protein crystallography, Biochem. Biophys. Res. Commun. 46:1999.PubMedCrossRefGoogle Scholar
  64. Cooley, J. W., and Tukey, 1965. An algorithm for the machine calculation of complex Fourier series, Math. Computation 19:297.CrossRefGoogle Scholar
  65. Cooper, J. W., 1977. The Minicomputer in the Laboratory ,Wiley-Interscience, New York, p. 211.Google Scholar
  66. Cotton, F. A., and Wilkinson, G., 1972. Advanced Inorganic Chemistry ,3rd ed., Wiley-Interscience, New York.Google Scholar
  67. Dadok, J., and Sprecher, R. F., 1974. Correlation nmr spectroscopy, J. Magn. Reson. 13:243.Google Scholar
  68. Dalgarno, D. C., Levine, B. A., Williams, R. J. P., Fullmer, C. S., and Wasserman, R. H., 1984. Proton-nmr studies of the solution conformations of vitamin-D-induced bovine intestinal calcium-binding protein, Eur. J. Biochem. 137:523.CrossRefGoogle Scholar
  69. Dalmark, M., 1976. Effects of halides and bicarbonate on chloride ion transport in human red blood cells, J. Gen. Physiol. 67:223.PubMedCrossRefGoogle Scholar
  70. Davies, D. B., 1978. Discussion Document on Nomenclature. 1. Conformation of Bio-polymers. 2. Notations for Descriptions of Conformations. 3. Notations for NMR Parameters Used in Analysis of Nucleotides, Jerusalem Symp. Quantum. Chem. Biochem. 11:509.Google Scholar
  71. Dawson, W. H., and Odom, J. D., 1977. Selenium-77 relaxation time studies. Considerations regarding direct observation of selenium resonances in biological systems, J. Am. Chem. Soc. 99:8352.CrossRefGoogle Scholar
  72. deDuve, C., deBarsy, T., Poole, B., Trouet, A., Tulkens, P., and Van Hoof, F., 1974. Lysosomotropic agents, Biochem. Pharmacol. 23:2495.PubMedCrossRefGoogle Scholar
  73. Derbyshire, W., Gorvin, T. C., and Warner, D., 1969. A deuteron magnetic resonance study of a single crystal of deuterated malonic acid, Mol. Phys. 17:401.CrossRefGoogle Scholar
  74. Deverell, C., 1969. Nuclear magnetic resonance studies of electrolyte solutions, Progress in NMR Spectroscopy 4:235.CrossRefGoogle Scholar
  75. Dickerson, R. E., and Timkovich, R., 1975. The Enzymes ,Vol. 11 (P. D. Boyer, ed.), Academic Press, New York, p. 397.CrossRefGoogle Scholar
  76. Donato, H., and Martin, R. B., 1975. Conformations of carp muscle calcium binding par-valbumin, Biochemistry 13:4575.CrossRefGoogle Scholar
  77. Dunfield, L. G., Burgess, A. W., and Scheraga, H. A., 1978. Energy parameters in polypeptides. 8. Empirical potential energy algorithm for the conformational analysis of large molecules, J. Phys. Chem. 82:2609.CrossRefGoogle Scholar
  78. Durig, J. R., and Bucy, W. E., 1977. Infrared, Raman, and microwave spectra of ethane-selenol and the determination of the barriers to internal rotation, J. Mol. Spectrosc. 64:474.CrossRefGoogle Scholar
  79. Dwek, R. A., 1973. Nuclear Magnetic Resonance in Biochemistry: Applications to Enzyme Systems ,Oxford University Press, England.Google Scholar
  80. Dzidic, I., and Kebarle, P., 1970. Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M + (H2O)n-1 + H2O = M + (H2O)n, J. Phys. Chem. 74:1466.CrossRefGoogle Scholar
  81. Earl, W. L., and VanderHart, D. L., 1980. High resolution, magic angle sample spinning 13C nmr of solid cellulose I, J. Am. Chem. Soc. 102:3251.CrossRefGoogle Scholar
  82. Eggleton, G. L., Jung, G., and Wright, J. R., 1978. The 1H-nmr spectra of mixed valence complexes of copper with derivatives of l-amino-2, 2-dimethyl-2-mercaptoethane, Bio-inorg. Chem. 8:173.Google Scholar
  83. Eichhorn, G. L., and Marzilli, L. G., 1979. Advances in Inorganic Biochemistry 1 ,Elsevier North Holland, New York.Google Scholar
  84. Ellett, J. D., Haeberlen, U., and Waugh, J. S., 1970. High resolution nuclear magnetic resonance of solid perfluorohexane, J. Am. Chem. Soc. 92:411.CrossRefGoogle Scholar
  85. Ernst, R. R., and Anderson, W. A., 1966. Application of Fourier transform spectroscopy to magnetic resonance, Rev. Sci. Instrum. 37:93.CrossRefGoogle Scholar
  86. Ernst, C. R., Spialter, L., Buell, G. R., and Wilhite, D. L., 1974. Silicon-29 nuclear magnetic resonance. Chemical shift substituent effects, J. Am. Chem. Soc. 96:5375.CrossRefGoogle Scholar
  87. Farnell, L. F., Randall, E. W., and White, A. I., 1972. Effect of Paramagnetic Species on the Nuclear Magnetic Resonance Spectra of Nitrogen-15, J. Chem. Soc., Chem. Commun. (20) ,1159.CrossRefGoogle Scholar
  88. Feigon, J., Leupin, W., Denny, W. A., and Kearns, D. R., 1983a. Proton nuclear magnetic resonance investigation of the conformation and dynamics in the synthetic deoxyribonucleic acid decamers d(ATATCGATAT) and d(ATATGCATAT), Biochemistry 22:5930.PubMedCrossRefGoogle Scholar
  89. Feigon, J., Leupin, W., Denny, W. A., and Kearns, D. R., 1983b. Two-dimensional proton nuclear magnetic resonance investigation of the synthetic deoxyribonucleic acid decamer d(ATATCGATAT)2, Biochemistry 22:5943.PubMedCrossRefGoogle Scholar
  90. Fielden, E. M., Roberts, P. B., Bray, R. C., Lowe, D. J., Mautner, G. N., Rotilio, G., and Calabrese, L., 1974. The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis, Biochem. J. 139:49.PubMedGoogle Scholar
  91. Finkel’shtein, A. V., and Ptitsyn, O. B., 1978. Theory of self-organization of protein secondary structure: Dependence of the native globule structure on the secondary structure of the unfolded chain, Dokl. Akad. Nauk SSSR 242:1226.PubMedGoogle Scholar
  92. Franklin, K. J., Lock, C. J. L., Sayer, B. G., and Schrobilgen, G. J., 1982. Chemical applications of 99Tc-nmr spectroscopy: Preparation of novel Tc(VII) species and their characterization by multinuclear nmr, J. Am. Chem. Soc. 104:5303.CrossRefGoogle Scholar
  93. Freeman, R., and Hill, H. D. W., 1971. High-resolution study of nmr spin echoes: J-spectra, J. Chem. Phys. 54:301.CrossRefGoogle Scholar
  94. Fyfe, C. A., Lyeria, J. R., and Yannoni, C. S., 1978. High resolution l3C nuclear magnetic resonance spectra of frozen liquids using magic angle spinning, J. Am. Chem. Soc. 100:5635.CrossRefGoogle Scholar
  95. Garson, M. J., and Staunton, J., 1979. Some new nmr methods for tracing the fate of hydrogen in biosynthesis, Chem. Soc. Reviews 8:539.CrossRefGoogle Scholar
  96. Gerasimova, G. K., and Nakhil’nitskaya, Z. N., 1977. Blood electrolyte levels and erythrocyte potassium ion transport in animals under the effect of a continuous magnetic field, Kosm. Biol. Aviakosm. Med. 11:63.PubMedGoogle Scholar
  97. Gerig, J. T., 1981. Fluorine magnetic resonance in biochemistry, in Biological Magnetic Resonance ,Vol. 1 (L. J. Berliner, and J. Reuben, eds.), Plenum Publishing Corp., New York, Chapter 4.Google Scholar
  98. Glickson, J. D., Mayers, D. F., Settine, J. M., and Urry, D. W., 1972. Spectroscopic studies on the conformation of gramicidin A. Proton magnetic resonance assignments, coupling constants and H-D exchange, Biochemistry 11:477.PubMedCrossRefGoogle Scholar
  99. Glusker, J. P., 1971. The Enzymes ,3rd ed., Vol. 5 (P. D. Boyer, ed.), Academic Press, New York, p. 413.Google Scholar
  100. Gochin, M., James, T. L., and Shafer, R. H., 1984. In Vivo 19F-nmr of 5-fluorouracil incorporation into RNA and metabolites in E. coli cells, Biochim. Biophys. Acta. 804:118.PubMedCrossRefGoogle Scholar
  101. Goetz, A. M., and Richards, J. H., 1978. Molecular studies of subspecificity differences among phosphorylcholine-binding mouse myeloma antibodies using 31P nuclear magnetic resonance, Biochemistry 17:1733.CrossRefGoogle Scholar
  102. Goldberg, M., and Gilboa, H., 1978. Sodium exchange between two sites. The binding of sodium to halotolerant bacteria, Biochim. Biophys. Acta. 538:268.PubMedCrossRefGoogle Scholar
  103. Golding, R. M., Pascual, R. O., and Vrbancich, J., 1976. On the theory of nmr screening constants in t21 and t25 transition metal ion complexes-the pseudocontact contribution, Mol. Phys. 31:731.CrossRefGoogle Scholar
  104. Goldman, S., 1948. Frequency Analysis, Modulation and Noise ,McGraw-Hill, New York.Google Scholar
  105. Gorenstein, D. C. (ed.), 1984. Phosphorous-31 NMR ,Academic Press, New York.Google Scholar
  106. Gosselin, R. E., Hodge, H. C., Smith, R. P., and Gleason, M. N., 1976. Clinical Toxicology of Commercial Products ,4th ed., Williams and Wilkina Co., Baltimore, Maryland, p. 307.Google Scholar
  107. Granger, R. P., 1974. Chemically induced dynamic nuclear and electron polarizations-CIDNP and CIDEP, in NMR, Basic Principles and Progress ,Vol. 8 (P. Diehl, E. Fluck, and R. Kosfeld, eds.), Springer-Verlag, Berlin.Google Scholar
  108. Griffin, R. G., Powers, L., and Pershan, P. S., 1978. Head-group conformations in phospholipids: A phosphorous-31 nuclear magnetic resonance study of oriented monodomain dipalmitoylphosphatidylcholine bilayers, Biochemistry 17:2718.PubMedCrossRefGoogle Scholar
  109. Gronowitz, S., Johnson, I., and Hornfeldt, A. B., 1975. Selenium-77 nmr studies of orga-noselenium compounds. I. Selenium-77 nmr parameters of monosubstituted seleno-phenes, Chem. Scr. 8:8.Google Scholar
  110. Gupta, R. K., Ferretti, J. A., and Becker, E. D., 1974. Rapid scan Fourier transform nmr spectroscopy, J. Magn. Reson. 13:275.Google Scholar
  111. Gurevich, A. Z., Barsokov, I. L., Arseniev, A. S., and Bystrov, V. F., 1984. Combined COSY-NOESY experiment, J. Magn. Reson. 56:471.Google Scholar
  112. Gutmann, V., and Wychera, E., 1966. Coordination reactions in nonaqueous solutions. The role of the donor strength, Inorg. Nucl. Chem. Lett. 2:257.CrossRefGoogle Scholar
  113. Gutowsky, H. S., and Saika, A., 1953. Dissociation, chemical exchange and the proton magnetic resonance in some aqueous electrolytes, J. Chem. Phys. 21:1688.CrossRefGoogle Scholar
  114. Harris, R. K., and Kimber, B. J., 1975. 29Si and 13C nuclear magnetic resonance studies of organosilicon chemistry. I. Trimethylsilyl compounds, J. Magn. Reson. 17:174.Google Scholar
  115. Harris, R. K., and Mann, B. E., 1979. NMR and the Periodic Table ,Academic Press, New York.Google Scholar
  116. Hartmann, S. R., and Hahn, E. L., 1962. Nuclear double resonance in the rotating frame, Phys. Rev. 128:2042.CrossRefGoogle Scholar
  117. Hawkes, G. E., Randall, E. W., and Bradley, C. H., 1975. Theory and practice for studies of peptides by 15N nuclear magnetic resonance at natural abundance: Gramicidin-S, Nature (London) 257:767.CrossRefGoogle Scholar
  118. Hawkes, G. E., Randall, E. W., Hull, W. E., Gattegno, D., and Conti, F., 1978. Qualitative aspects of hydrogen-deuterium exchange in the 1H, 13C and 15N nuclear magnetic resonance spectra of viomycin in aqueous solution, Biochemistry 17:3986.PubMedCrossRefGoogle Scholar
  119. Herzfeld, J., Griffin, R. G., and Haberkorn, R. A., 1978. Phosphorous-31 chemical-shift tensors in barium diethyl phosphate and urea-phosphoric acid: Model compounds for phospholipid head-group studies, Biochemistry 17:2711.PubMedCrossRefGoogle Scholar
  120. Hinton, J. F., and Briggs, R. W., 1975. Thallium-205 nmr spectroscopy. I.: 205T11+ chemical shifts. A sensitive probe for preferential solvation and solution structure, J. Magn. Reson. 19:393.Google Scholar
  121. Hoekstra, W. G., Suttie, J. W., Ganther, H. E., and Mertz, W. (eds.), 1974. Trace Element Metabolism in Animals-2, Proceedings of the Second International Symposium ,University Park Press, Baltimore, Maryland.Google Scholar
  122. Hollis, D. P., 1980. Phosphorous nmr of cells, tissues and organelles, in Biological Magnetic-Resonance ,Vol. 2 (L. J. Berliner and J. Reuben, eds.), Plenum Publishing Corp., New York, pp. 1–44.Google Scholar
  123. Horowitz, J., Ofeugand, J., Daniel, W. E., and Cohn, M., 1977. Fluorine-19 nuclear magnetic resonance of 5-fluorouridine-substituted tRNA-Val from Escherichia coli, J. Biol. Chem. 252:4418.PubMedGoogle Scholar
  124. Hruska, F. E., Grey, A. A., and Smith, I. C. P., 1970. Nuclear magnetic resonance study of the molecular conformation of -pseudouridine in aqueous solution, J. Am. Chem. Soc. 92:4088.PubMedCrossRefGoogle Scholar
  125. Hutton, W. C. Yeagle, P. L., and Martin, R. B., 1977. The interaction of lanthanide and calcium salts with phospholipid bilayer vesicles: The validity of the nuclear magnetic resonance method for determination of vesicle bilayer phospholipid surface ratios, Chem. Phys. Lipids 19:255.PubMedCrossRefGoogle Scholar
  126. Inubushi, T., Ikeda-Saito, M., and Yonetani, T., 1983. Isotropically shifted nmr resonances for the proximal histidyl imidazole NH protons in cobalt hemoglobin and iron-cobalt hybrid hemoglobins. Binding of the proximal histidine toward porphyrin metal ion in the intermediate state of cooperative ligand binding, Biochemistry 22:2904.PubMedCrossRefGoogle Scholar
  127. James, T. L., 1975. Nuclear Magnetic Resonance in Biochemistry: Principles and Applications ,Academic Press, New York.Google Scholar
  128. Jeener, J., Meier, B. H., Bachmann, P., and Ernst, R. R., 1979. Investigation of exchange processes by two-dimensional NMR spectroscopy, J. Chem. Phys. 71:1979.CrossRefGoogle Scholar
  129. Jefferson, N. A., Beavers, C. R., Beavers, D. A., McElroy, M., and Wright, J. R., 1979. 1H-nmr effects in chloroquine-biopolymer binding interactions, Physiol. Chem. Phys. 11:233.PubMedGoogle Scholar
  130. Kanamori, K., and Roberts, J. D., 1983. 15N nmr studies of biological systems, Acc. Chem. Res. 16:35.CrossRefGoogle Scholar
  131. Kaptein, R., Dijkstra, K., and Nicolay, K., 1978. Laser photo-CIDNP as a surface probe for proteins in solution, Nature (London) 274:293.CrossRefGoogle Scholar
  132. Karplus, M., 1963. Vicinal proton coupling in nuclear magnetic resonance, J. Am. Chem. Soc. 85:2870.CrossRefGoogle Scholar
  133. Keepers, J. W., and James, T. L., 1984. A theoretical study of distance determinations from nmr. Two-dimensional nuclear Overhauser effect spectra, J. Magn. Reson. 57:404.Google Scholar
  134. Keeton, K. R., and Wright, J. R., 1980. Modifying a spare 60 MHz 1H-nmr detector for 23Na, 27A1 and 63Cu, Eighth Annual MBS Biomedical Symposium, Paper P-57 (Spectroscopy), April 10, 1980, Atlanta, Georgia.Google Scholar
  135. Kessler, H., Bermel, W., Friederich, A., Krack, G., and Hull, W. E., 1982. Peptide conformation. 17. Cyclo-(L-Pro-L-Pro-D-Pro). Conformational analysis by 270-and 500 MHz one-and two-dimensional 1H-nmr spectroscopy, J. Am. Chem. Soc. 104:6297.CrossRefGoogle Scholar
  136. Khaled, M. A., Urry, D. W., Sugano, H., Miyoshi, M., and Izymiya, N., 1978. Hydrogen-deuterium substitution and solvent effects on the nitrogen-15 nuclear magnetic resonance of gramicidin-S: Evaluation of secondary structure, Biochemistry ,17:2490.PubMedCrossRefGoogle Scholar
  137. Kidd, G., and Goodfellow, R. J., 1979. The transition metals, in NMR and the Periodic Table (R. K. Harris, and B. E. Mann, eds.), Academic Press, London.Google Scholar
  138. Kittel, C., 1968. Introduction to Solid State Physics ,John Wiley and Sons, Inc., New York, p. 515.Google Scholar
  139. Klemperer, W. G., 1978. 170-Nmr spectroscopy as a structural probe, Angew. Chem., Int. Ed. Engl. 17:246.CrossRefGoogle Scholar
  140. Knappenberg, M., Brison, J., Dirks, J., Hallenga, K., Deschrijver, P., and Van Binst, G., 1979. Conformational studies on somatostatin. II. The C-terminal hexapeptide fragment, Biochim. Biophys. Acta. 580:266.PubMedGoogle Scholar
  141. Kohler, S. J., and Klein, M. P., 1976. 31P nuclear magnetic resonance chemical shielding tensors of phosphorylethanolamine, lecithin and related compounds: Applications to head-group motion in model membranes, Biochemistry 15:967.PubMedCrossRefGoogle Scholar
  142. Kohler, S. J., and Klein, M. P., 1977. Orientation and dynamics of phospholipid head groups in bilayers and membranes determined from 31P nuclear magnetic resonance chemical shielding tensors, Biochemistry 16:519.PubMedCrossRefGoogle Scholar
  143. Komoroski, R. A., Peat, I. R., and Levy, G. C, 1975. High field carbon-13 nmr spectroscopy. Conformational mobility in gramicidin-S and frequency dependence of 13C spin-lattice relaxation times, Biochem. Biophys. Res. Commun. 65:272.PubMedCrossRefGoogle Scholar
  144. Kumar, A., Ernst, R. R., and Wuthrich, K., 1980. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross relaxation networks in biological macromolecules, Biochem. Biophys. Res. Commun. 95:1.PubMedCrossRefGoogle Scholar
  145. Kuntz, I. D., Crippen, G. M., and Kollman, P. A., 1979. Application of distance geometry to protein tertiary structure calculations, Biopolymers 18:939.CrossRefGoogle Scholar
  146. Kyogoku, Y., and Iitaka, Y., 1966. The crystal structure of barium diethyl phosphate, Acta Crystallogr. 21:49.CrossRefGoogle Scholar
  147. Lachmann, H., and Schnackerz, C. D., 1984. 31P nuclear magnetic resonance titrations: Simultaneous evaluation of all pH-dependent resonance signals, Org. Magn. Reson. 22:101.CrossRefGoogle Scholar
  148. LaMar, G., Krishnamoorthi, R., Smith, K. M., Gersonde, K., and Sick, H., 1983. Proton nuclear magnetic resonance investigation of the conformation-dependent spin equilibrium in azide-ligated monomeric insect hemoglobins, Biochemistry 22:6239.CrossRefGoogle Scholar
  149. Laszlo, P., 1978. Sodium-23 nuclear magnetic resonance spectroscopy, Angew. Chem., Int. Ed. Engl. 17:254.CrossRefGoogle Scholar
  150. Laszlo, P., 1983. NMR of Newly Accessible Nuclei: Chemical and Biochemical Applications ,Vol. 1, Academic Press, New York.Google Scholar
  151. Laszlo, P., 1984. NMR of Newly Accessible Nuclei: Chemically and Biochemically Important Elements ,Vol. 2, Academic Press, New York.Google Scholar
  152. Lauterbur, P., Kramer, D., Hause, W., and Ching-Nien, C., 1975. Zeugmatographic high resolution nuclear magnetic resonance spectroscopy. Images of chemical inhomogeneity within macroscopic objects, J. Am. Chem. Soc. 97:6866.CrossRefGoogle Scholar
  153. Lee, L., Sykes, B. D., and Birnbaum, E. R., 1979. A determination of the relative compactness of the Ca2 + -binding sites of a Ca2 +-binding fragment of troponin-C and parvalbumin using lanthanide-induced 1H-nmr shifts, FEBS Lett. 98:169.PubMedCrossRefGoogle Scholar
  154. Lee, M., and Goldberg, W. I., 1965. Nuclear magnetic resonance line narrowing by a rotating radio frequency (RF) field, Phys. Rev. A 140:1261.Google Scholar
  155. Lepley, A. R., and Closs, G. L. (eds.), 1973. Chemically Induced Magnetic Polarization ,John Wiley, New York.Google Scholar
  156. Levi, B. G., 1977. Two magnets set records for field intensity, Physics Today 30:20.CrossRefGoogle Scholar
  157. Levy, G. C., and Lichter, R. L., 1979. Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy ,Wiley-Interscience, New York.Google Scholar
  158. Levy, G. C., and Nelson, G. L., 1972. Carbon-13 NMR for Organic Chemists ,Wiley-Interscience, New York.Google Scholar
  159. Li, S., Johnson, D. L., Gladysz, J. A., and Servis, K. L., 1979. Silicon-29 nmr spectra of metal carbonyl silanes by the selective population transfer method, J. Organomet. Chem. 166:317.CrossRefGoogle Scholar
  160. Linas, M., and Klein, M. P., 1975. Charge relay at the peptide bond. A proton magnetic resonance study of solvation effects on the amide electron density distribution, J. Am. Chem. Soc. 97:4731.CrossRefGoogle Scholar
  161. Lindman, B., and Forsen, S., 1976. NMR Basic Principles and Progress ,Vol. 12, Chlorine, Bromine and Iodine NMR. Physicochemical and Biological Applications ,(P. Diehl, E. Fluck, and R. Kosfeld, eds.), Springer-Verlag, Berlin.Google Scholar
  162. Lindman, B., and Forsen, S., 1979. The halogens-chlorine, bromine and iodine, in NMR and the Periodic Table (R. K. Harris, and B. E. Mann, eds.), Academic Press, London.Google Scholar
  163. Lindstrom, T. R., Ho, C., and Pisciotta, A. V., 1972. Nuclear magnetic resonance studies of hemoglobin M Milwaukee, Nature (London), New Biol. 237:263.Google Scholar
  164. Lippmaa, E., Saluvere, T., and Laisarr, S., 1971. Spin-Lattice relaxation of 15N-nuclei in organic compounds, Chem. Phys. Lett. 11:120.CrossRefGoogle Scholar
  165. Llinas, M., Klein, M. P., and Nielands, J. B., 1970. Solution conformation of ferrichrome, a microbial iron transport cyclohexapeptide, as deduced by high resolution proton magnetic resonance, J. Mol. Biol. 52:399.PubMedCrossRefGoogle Scholar
  166. Llinas, M., Horsley, W. J., and Klein, M. P., 1976. Nitrogen-15 nuclear magnetic resonance spectrum of alumichrome. Detection by a double resonance Fourier transform technique, J. Am. Chem. Soc. 98:7554.PubMedCrossRefGoogle Scholar
  167. London, R. E., Walker, T. E., Kollman, V. H., and Matwiyoff, N. A., 1977. Proton relaxation in 13C-enriched molecules; 13C T1 and NOE data from proton magnetic resonance measurements, J. Magn. Reson. 26:213.Google Scholar
  168. Lowe, I. J., 1959. Free induction decay of rotating solids, Phys. Rev. Lett. 2:285.CrossRefGoogle Scholar
  169. Lutz, M., Kleo, J., Gilet, R., Henry, M., Plus, R., and Leicknam, J. R., 1976a, Vibrational spectra of chlorophylls a and b labeled with magnesium-26 and nitrogen-15, in Proc. 2nd Int. Conf. Stable Isotopes (1975) (E. R. Klein, and P. D. Klein, eds.), NTIS, Springfield, Virginia.Google Scholar
  170. Lutz, O., Neple, W., and Nolle, A., 1976b. 17O and 33S Fourier transform nmr studies in thiosulfate and thiomolybdate solutions, Z. Naturforsch. A3L978.Google Scholar
  171. Lutz, O., Oehler, H., and Kroneck, P., 1978. Copper-63 and -65 Fourier transform nuclear magnetic resonance studies, Z. Phys. A. 288:17.CrossRefGoogle Scholar
  172. Magnusson, J. A., and Bothner-By, A. A., 1971. 25Mg2+ nuclear resonance as a probe of Mg2+ complex formation, in Magnetic Resonances in Biological Research (C. Franconi, ed.), Gordon and Breach, New York, Paper 35.Google Scholar
  173. Mantsch, H. H., Saito, H., and Smith, I. C. P., 1977. Deuterium magnetic resonance, applications in chemistry, physics and biology, Progress in Nuclear Magnetic Resonance Spectroscopy 11:211.CrossRefGoogle Scholar
  174. Mariam, Y. H., and Wilson, W. D., 1979. A phosphorous-31 nmr analysis of the helix to coil transition of natural DNA samples: Evidence for the existence of different conformational states, Biochem. Biophys. Res. Commun. 88:861.PubMedCrossRefGoogle Scholar
  175. Marki, W., Opplinger, M., Thanei, P., and Schwyzer, R., 1977. d(-). and l. + )- -Carbox-yglutamic acid (Gla): Resolution of synthetic Gla derivatives, Helv. Chim. Acta. 60:798.PubMedCrossRefGoogle Scholar
  176. Mason, J., 1981. Nitrogen nmr spectroscopy in inorganic, organometallic and bioinorganic chemistry, Chem. Rev. 81:205.CrossRefGoogle Scholar
  177. Mavel, G., 1973. Nmr studies of phosphorous compounds, in Annual Reports on NMR Spectroscopy ,Vol. 5B (E. F. Mooney, ed.), Academic Press, New York.Google Scholar
  178. Maxfield, F. R., and Scheraga, H. A., 1979. Improvements in the prediction of protein backbone topography by reduction of statistical errors, Biochemistry 18:697.PubMedCrossRefGoogle Scholar
  179. McConnell, H. M., and Robertson, R. E., 1958. Comments on theory of isotopic hyperfine interactions in pi-electron radicals, J. Chem. Phys. 28:991.CrossRefGoogle Scholar
  180. Mehring, 1976. High resolution nmr spectroscopy in solids, in NMR, Basic Principles and Progress ,Vol. 11 (P. Diehl, E. Fluck, and R. Kosfeld, eds.), Springer-Verlag, New York.Google Scholar
  181. Meiboom, S., and Gill, D., 1958. Modified spin-echo method for measuring nuclear relaxation times, Rev. Sci. Instrum. 29:688.CrossRefGoogle Scholar
  182. Metcalfe, J. C., Burgen, A. S. V., and Jardetzky, O., 1968. On the mechanism of binding of choline derivatives to an anticholine antibody, in Molecular Associations in Biology (B. Pullman, ed.), Academic Press, New York, p. 487.Google Scholar
  183. Miknis, F. P., Bartuska, V. J., and Maciel, G. E., 1979. Cross-polarization 13C-nmr with magic angle spinning. Some applications to fossil fuels and polymers, Am. Lab. 11:19.Google Scholar
  184. Moore, W. J., 1962. Physical Chemistry ,3rd ed., Prentice Hall, Englewood Cliffs, New Jersey, p. 231.Google Scholar
  185. Morashima, I., and Hara, M., 1982. High pressure nmr studies of hemoproteins. Pressure induced structural changes in the heme environments of cyanometmyoglobin, J. Am. Chem. Soc. 104:6833.CrossRefGoogle Scholar
  186. Morishima, I., and Inubushi, T., 1978. 15N nuclear magnetic resonance studies of iron-bound C15N-in ferric low-spin cyanide complexes of various porphyrin derivatives and various hemoproteins, J. Am. Chem. Soc. 100:3568.CrossRefGoogle Scholar
  187. Morris, A. T., and Dwek, R. A., 1977. Some recent applications of the use of paramagnetic centers to probe biological systems using nuclear magnetic resonance, Quart. Rev. Biophys. 10:421.CrossRefGoogle Scholar
  188. Morris, G. A., 1980. Sensitivity enhancement in l5N nmr: Polarization transfer using the INEPT pulse sequence, J. Am. Chem. Soc. 102:428.CrossRefGoogle Scholar
  189. Moses. V., Holm-Hansen, O., and Calvin, M., 1958. Response of chlorella to a deuterium environment, Biochim. Biophys. Acta. 28:62.PubMedCrossRefGoogle Scholar
  190. Mullen, K., and Pregosin, P. S., 1976. Fourier Transform NMR Techniques: A Practical Approach ,Academic Press, New York.Google Scholar
  191. Muus, L. T., Atkins, P. W., McLauchlan, K. A., and Pedersen, J. B. (eds.), 1977. NATO Advanced Study Institute Series ,Vol. C34, Chemically Induced Magnetic Polarization, D. Reidel Publishing Co., Dordrecht, The Netherlands.Google Scholar
  192. Muzskat, K. A., and Weinstein, M., 1975. Photochemically induced dynamic nuclear polarization study of reversible hydrogen transfer between dyes and phenolic oxidation inhibitors, J. Chem. Soc., Chem. Commun. 1975:143.CrossRefGoogle Scholar
  193. Muzskat, K. A., 1977a. Effects of acid-base equilibrium on photo-CIDNP in nitroaromatic compounds, Chem. Phys. Lett. 49:538.Google Scholar
  194. Muzskat, K. A., 1977b. Photo-CIDNP in the tyrosyl unit: A new tool in high resolution nuclear magnetic resonance studies of peptides, J. Chem. Soc., Chem. Commun. 1977:872.CrossRefGoogle Scholar
  195. Muzskat, K. A., Weinstein, M., and Gilon, C., 1978. Biochemical applications of chemically induced nuclear polarization in phenols, peptides, catecholamines and related molecules, Biochem. J. 173:993.Google Scholar
  196. Nagayama, K., Wuthrich, K., Bachmann, P., and Ernst, R. R., 1977. Two-dimensional J-resolved 1H-nmr spectroscopy for studies of biological macromolecules, Biochem. Biophys. Res. Commun. 78:99.PubMedCrossRefGoogle Scholar
  197. Nagayama, K., Kumar, A., Wuthrich, K., and Ernst, R. R., 1980. Experimental techniques of two-dimensional correlated spectroscopy, J. Magn. Reson. 40:321.Google Scholar
  198. Nakano, M., Nakano, N. I., and Higuchi, T., 1967. Calculation of stability constants of hydrogen-bonded complexes from proton magnetic resonance data. Interaction of phenol with dimethylacetamide and various ketones. Solvent effects, J. Phys. Chem. 71:3954.CrossRefGoogle Scholar
  199. Navon, G., and Lanir, A., 1972. Nmr relaxation by intermolecular and intramolecular dipolar interactions in small molecules bound to an enzyme, J. Magn. Reson. 8:144.Google Scholar
  200. Navon, G., Ogawa, S., Shulman, R. G., and Yamane, T., 1977. High-resolution 31P nuclear magnetic resonance studies of metabolism in aerobic Escherichia coli cells, Proc. Natl. Acad. Sci. U.S.A. 74:888.PubMedCrossRefGoogle Scholar
  201. Njus, D., Sehr, P. A., Radda, G. K., Ritchie, G. A., and Seeley, P. J., 1978. Phosphorous-31 nuclear magnetic resonance studies of active proton translocation in chromaffin granules, Biochemistry 17:4337.PubMedCrossRefGoogle Scholar
  202. Noggle, J. H., and Schirmer, R. E., 1971. The Nuclear Overhauser Effect, Chemical Applications ,Academic Press, New York.Google Scholar
  203. Noth, H., and Wrackmeyer, B., 1978. Nuclear Magnetic Resonance Spectroscopy of Boron Compounds ,Springer-Verlag, New York.Google Scholar
  204. Oldfield, E., Gutosky, H. S., Jacobs, R. E., Kang, S. Y., Meadows, M. D., Rice, D. M., and Skarjune, R. P., 1978a. Recent developments in high-field nmr spectroscopy of biological systems, Am. Lab. 10:19.Google Scholar
  205. Oldfield, E., Meadows, M., Rice, D., and Jacobs, R., 1978b. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems, Biochemistry 17:2727.PubMedCrossRefGoogle Scholar
  206. Orme-Johnson, W. H., 1973. Iron-sulfur proteins: Structure and function, Annu. Rev. Biochem. 42:159.PubMedCrossRefGoogle Scholar
  207. Pardi, A., Wagner, G., and Wuthrich, K., 1983. Protein conformation and proton nuclear-magnetic-resonance chemical shifts, Eur. J. Biochem. 137:445.PubMedCrossRefGoogle Scholar
  208. Passow, H., 1969. Progress in Biophysics and Molecular Biology ,Vol. 19 (J. A. V. Butler, and D. Noble, eds.), Pergamon Press, New York, p. 425.Google Scholar
  209. Pattnaik, N. M., Kezdy, F. J., and Scanu, A. M., 1976. Kinetic study of the action of snake venom phospholipase A2 on human serum high density lipoprotein 3, J. Biol. Chem. 251:1984.PubMedGoogle Scholar
  210. Pike, M. M., Fossel, E. T., Smith, T. W., and Springer, C. S., 1984. High-resolution 23Nanmr studies of human erythrocytes: Use of aqueous shift reagents, Am. J. Physiol. 246:C528.PubMedGoogle Scholar
  211. Pines, A., Gibby, M. G., and Waugh, J. S., 1973. Proton-enhanced nmr of dilute spins in solids, J. Chem. Phys. 59:569.CrossRefGoogle Scholar
  212. Pitner, T. P., and Urry, D. W., 1972. Proton magnetic resonance studies in trifluoroethanol. Solvent mixtures as a means of delineating peptide protons, J. Am. Chem. Soc. 94:1399.PubMedCrossRefGoogle Scholar
  213. Pitner, T. P., Glickson, J. D., Rowan, R., Dadok, J., and Bothner-By, A. A., 1975. Delineation of interactions between specific solvent and solute nuclei. Nuclear magnetic resonance solvent saturation study of gramicidin-S in methanol, dimethyl sulfoxide and trifluoroethanol, J. Am. Chem. Soc. 97:5917.CrossRefGoogle Scholar
  214. Plaush, A. C., and Sharp, R. R., 1976. Ion binding to nucleotides. A chlorine-35 and lithium-7 nmr study, J. Am. Chem. Soc. 98:7973.PubMedCrossRefGoogle Scholar
  215. Poe, M., Phillips, W. D., McDonald, C. C., and Orme-Johnson, W. H., 1971. Pmr and magnetic susceptibility studies on Clostridium acidiurici ferredoxin, Biochem. Biophys. Res. Commun. 42:705.PubMedCrossRefGoogle Scholar
  216. Pople, J. A., Beveridge, D. L., and Dobosh, P. A., 1968. Molecular orbital theory of the electronic structure of organic compounds. II. Spin densities in paramagnetic species, J. Am. Chem. Soc. 90:4201.CrossRefGoogle Scholar
  217. Popov, E. M., and Zheltova, V. N., 1971. Electronic structure and properties of the peptide group, J. Mol. Struct. 10:221.CrossRefGoogle Scholar
  218. Powers, L., and Clark, N. A., 1975. Preparation of large monodomain phospholipid bilayer smectic liquid crystals, Proc. Natl. Acad. Sci. U.S.A. 72:840.PubMedCrossRefGoogle Scholar
  219. Quin, L. D., Gallager, M. J., Cuncie, G. T., and Chestnut, D. B., 1980. 31P and 13C-nmr spectra of 2-norbornyl phosphorous compounds. Karplus equations for 3Jpc in several P(III) and P(IV) derivatives, J. Am. Chem. Soc. 102:3136.CrossRefGoogle Scholar
  220. Rabiner, L. R., Schafer, R. W., and Rader, C. M., 1969. The chirp Z-transform algorithm, IEEE Trans. Audio. Electroacoust. Au-17:86.CrossRefGoogle Scholar
  221. Reich, H. J., and Trend, J. E., 1976. Stereochemical dependence of geminal selenium-carbon coupling constants, J. Chem. Soc., Chem. Commun. 1976:310.CrossRefGoogle Scholar
  222. Reuben, J., Shporer, M., and Gabbay, E. J., 1975. The alkali ion-DNA interaction as reflected in the nuclear relaxation rates of 23Na and 87Rb, Proc. Natl. Acad. Sci. U.S.A. 72:245.PubMedCrossRefGoogle Scholar
  223. Richardson, J. S., Thomas, K. A., and Richardson, D. C., 1975a. Alpha-carbon coordinates for bovine Cu, Zn superoxide dismutase, Biochem. Biophys. Res. Commun. 63:986.PubMedCrossRefGoogle Scholar
  224. Richardson, J. S., Thomas, K. A., Rubin, B. H., and Richardson, D. C, 1975b. Crystal structure of bovine Cu, Zn superoxide dismutase at 3 angstrom resolution: Chain tracing and metal ligands, Proc. Natl. Acad. Sci. U.S.A. 72:1349.PubMedCrossRefGoogle Scholar
  225. Richarz, R., and Wirthlin, T., 1981. CCCP: Carbon-Carbon Connectivity Plots on the XL-200. A New Tool for Structural Analysis of Organic Molecules. Document Z-13, Varian Instruments, Inc.Google Scholar
  226. Righetti, P., and Moeschlin, S., 1971. The therapeutic effect of dithiocarb (DTC) and potassium chloride on experimental thallium poisoning in guinea pigs, Clin. Toxicol. 4:165.PubMedCrossRefGoogle Scholar
  227. Rinaldi, P. L., and Baldwin, N. J., 1982. 13C{2H} insensitive nuclei enhanced by polarization transfer (INEPT): A new strategy for isotopic labelling studies, J. Am. Chem. Soc. 104:5791.CrossRefGoogle Scholar
  228. Roberts, G. C. K., Feeney, J., Birdsall, B., Kimber, B., Griffiths, D. V., King, R. W., and Burgen, A. S. V., 1977. Dihydrofolate reductase: The use of fluorine-labeled and selectively deuterated enzyme to study substrate and inhibitor binding, in NMR in Biology, Proceedings of the British Biophysical Society Spring Meeting (R. A. Dwek, I. O. Campbell, and R. E. Richards, eds.), Academic Press, London.Google Scholar
  229. Roberts, J. D., 1961. An Introduction to the Analysis of Spin-Spin Splitting in High Resolution Nuclear Magnetic Resonance Spectra ,Benjamin Press, New York.Google Scholar
  230. Robertson, P., Hiskey, R. G., and Koehler, K. A., 1978. Calcium and magnesium binding to-carboxylglutamic acid-containing peptides via metal ion nuclear magnetic resonance, J. Biol. Chem. 253:5880.PubMedGoogle Scholar
  231. Rodger, C., Sheppard, N., McFarlane, H. C. E., and McFarlane, W., 1979. Group VI-oxygen, sulphur, selenium and tellurium, in NMR and the Periodic Table (R. K. Harris, and B. E. Mann, eds.), Academic Press, London.Google Scholar
  232. Rothstein, A., Cabantchik, Z. I., Balshin, M., and Juliano, R., 1975. Enhancement of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cell membranes, Biochem. Biophys. Res. Commun. 64:144.PubMedCrossRefGoogle Scholar
  233. Rybaczewski, E. F., Neff, B. L., Waugh, J. S., and Sherfinski, J. S., 1977. High resolution 13C nmr in solids: 13C local fields of CH, CH2, and CH3, J. Chem. Phys. 67:1231.CrossRefGoogle Scholar
  234. Samoson, A., Kundla, E., and Lippmaa, E., 1982. High resolution MAS-nmr of quadrupolar nuclei in powders, J. Magn. Reson. 49:350.Google Scholar
  235. Samuelson, G. L., Obenauf, R. H., and Albright, M. J., 1977. Digital quadrature detection in Fourier transform nmr, Am. Lab. 9:85.Google Scholar
  236. Santini, R. E., and Grutzner, J. B., 1976a. A broadband systenrfor the observation of nmr spectra of any resonant nucleus, J. Magn. Reson. 22:155.Google Scholar
  237. Santini, R. and Grutzner, J. B., 1976b. Total systematic noise reduction in Fourier transform nuclear magnetic resonance spectrometry, Anal. Chem. 48:941.CrossRefGoogle Scholar
  238. Schaefer, J., Stejskal, E. O., and McKay, R. A., 1979. Cross-polarization nmr of nitrogen 15-labeled soybeans, Biochem. Biophys. Res. Commun. 88:274.PubMedCrossRefGoogle Scholar
  239. Schwarz, K., 1973. A bound form of silicon in glycosaminoglycans and polyuronides, Proc. Natl. Acad. Sci. U.S.A. 70:1608.PubMedCrossRefGoogle Scholar
  240. Schwarzschild, B. M., 1979. New nmr spectrometer doubles resolving power, Physics Today 32:19.Google Scholar
  241. Seelig, J., 1977. Deuterium magnetic resonance: Theory and application to lipid membranes, Quart. Rev. Biophys. 10:353.CrossRefGoogle Scholar
  242. Shami, Y., Carver, J., Ship, S., and Rothstein, A., 1977. Inhibition of Cl-binding to anion transport protein of the red blood cell by DIDS (4,4 -diisothiocyano-2,2-stilbene di-sulfonic acid) measured by 35Cl-nmr, Biochem. Biophys. Res. Commun. 76:429.CrossRefGoogle Scholar
  243. Shannon, C. E., and Weaver, W., 1949. The Mathematical Theory of Communication, University of Illinois Press, Urbana, Illinois.Google Scholar
  244. Shporer, M., and Civan, M. M., 1974. Effects of temperature and field strength on the nmr relaxation times of 23Na in frog striated muscle, Biochim. Biophys. Acta 354:291.PubMedCrossRefGoogle Scholar
  245. Singleton, R. C, 1969. Algorithm for mixed radix FFT, IEEE Trans. Audio. Electroacoust. Au-17:93.CrossRefGoogle Scholar
  246. Smith, P. J., and Tupciauskas, A. P., 1978. Chemical shifts of 119Sn nuclei in organotin compounds, in Annual Reports on NMR Spectroscopy ,Vol. 8, (E. F. Mooney, ed.), Academic Press, New York, pp. 291–370.CrossRefGoogle Scholar
  247. Solomon, I., 1955. Relaxation processes in a system of two spins, Phys. Rev. 99:559.CrossRefGoogle Scholar
  248. Stern, A., Gibbons, W., and Craig, L. C, 1968. A conformational analysis of gramicidin-S-A by nuclear magnetic resonance, Proc. Natl. Acad. Sci. U.S.A. 61:734.PubMedCrossRefGoogle Scholar
  249. Stoesz, J. D., Redfield, A. G., and Malinowski, D., 1978. Cross relaxation and spin diffusion effects on the proton nmr of biopolymers in H2O, FEBS Lett. 91:320.PubMedCrossRefGoogle Scholar
  250. Strop, P., Cechova, D., and Wuthrich, K., 1983a. Preliminary structural comparison of the proteinase isoinhibitors IIA and IIB from bull seminal plasma based on individual assignments of the 1H nuclear magnetic resonance spectra by two-dimensional nuclear magnetic resonance at 500 MHz, J. Mol. Biol. 166:669.PubMedCrossRefGoogle Scholar
  251. Strop, P., Wider, G., and Wuthrich, K., 1983b. Assignment of the ‘H nuclear magnetic resonance spectrum of the proteinase inhibitor IIA from bull seminal plasma by two-dimensional nuclear magnetic resonance at 500 MHz, J. Mol. Biol. 166:641.PubMedCrossRefGoogle Scholar
  252. Stryer, L., 1975. Biochemistry ,W. H. Freeman and Co., San Francisco, California, Chapter 10, p. 235.Google Scholar
  253. Sudmeier, J. L., and Perkins, T. G., 1977. Studies of single 199Hg(II) ion resonances in the active site of human carbonic anhydrase B by Fourier transform nuclear magnetic resonance, J. Am. Chem. Soc. 99:7732.PubMedCrossRefGoogle Scholar
  254. Suelter, C. H., 1974. Monovalent cations in enzyme-catalyzed reactions, in Metal Ions in Biological Chemistry ,Vol. 3 (H. Sigel, ed.), Marcel Dekker, New York, p. 201.Google Scholar
  255. Suzuki, M., and Kubo, R., 1964. Theoretical calculation of nmr spectral line shapes, Mol. Phys. 7:201.CrossRefGoogle Scholar
  256. Swift, T. J., and Connick, R. E., 1962. Nmr-relaxation mechanisms of 17O in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere, J. Chem. Phys. 37:307.CrossRefGoogle Scholar
  257. Tenforde, T. S. (ed.), 1979. Magnetic Field Effects on Biological Systems ,Plenum Press, New York.Google Scholar
  258. Terpstra, D., 1979. Two dimensional Fourier transform 13C nmr, in Topics in Carbon-13 NMR Spectroscopy ,Vol. 3 (G. C. Levy, ed.), Wiley-Interscience, New York, Section VI, p. 62.Google Scholar
  259. Timkovich, R., and Cork, M. S., 1982. Nitrogen-15 nmr investigation of nitrite reduc-tase-substrate interaction, Biochemistry 21:3794.PubMedCrossRefGoogle Scholar
  260. Tomita, S., and Riggs, A., 1970. Effects of partial deuteration on the properties of human hemoglobin, J. Biol. Chem. 245:3104.PubMedGoogle Scholar
  261. Urbina, J., and Waugh, J. S., 1974. Proton-enhanced 13C nuclear magnetic resonance of lipids and biomembranes, Proc. Natl. Acad. Sci. U.S.A. 71:5062.PubMedCrossRefGoogle Scholar
  262. Urry, D. W., and Ohnishi, M., 1970. Spectroscopic Approaches to Biomolecular Conformation (E. W. Urry, ed.), American Medical Association Press, Chicago, Illinois, p. 263.Google Scholar
  263. Wagner, G., 1984. Two-dimensional relayed coherence transfer-NOE spectroscopy, J. Magn. Reson. 57:497.Google Scholar
  264. Wagner, G., and Wuthrich, K., 1982. Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Basic pancreatic trypsin inhibitor., J. Mol. Biol. 155:347.Google Scholar
  265. Wagner, G., and Zuiderweg, E. R. P., 1983. Two-dimensional double quantum 1H nmr spectroscopy of proteins, Biochem. Biophys. Res. Commun. 113:854.PubMedCrossRefGoogle Scholar
  266. Wasson, J. R., 1984. Nuclear magnetic resonance spectrometry, Anal. Chem. 56:212B.CrossRefGoogle Scholar
  267. Wasson, J. R., and Corvan, P. J., 1978. Nuclear magnetic resonance spectroscopy, Anal. Chem. 50:121R.CrossRefGoogle Scholar
  268. Waugh, J. S., Huber, L. M., and Haeberlen, U., 1968. Approach to high resolution nmr in solids, Phys. Rev. Lett. 20:180.CrossRefGoogle Scholar
  269. Wayland, J. R., and Brannen, J. P., 1977. Absolute reaction rate model for the response of Bacillus subtillis to microwave radiation, Sandia Progress Report #Sand-76–9301C.Google Scholar
  270. Weast, R. C. (ed.), 1972. Handbook of Chemistry and Physics ,52nd ed., E-57, Chemical Rubber Publishing Co., Cleveland, Ohio.Google Scholar
  271. Williams, R. J. P., 1970. Biochemistry of sodium, potassium, magnesium, and calcium, Quart. Rev. Chem. Soc. 1970:331.CrossRefGoogle Scholar
  272. Wright, J. R., and Klingen, T. J., 1972. 1H-Nmr spectra of icosahedral carborane polymers in solution: Temperature dependent effects, J. Inorg. Nucl. Chem. 34:3284.CrossRefGoogle Scholar
  273. Wuthrich, K., 1976. Nmr in Biological Research: Peptides and Proteins ,Elsevier, New York.Google Scholar
  274. Wuthrich, K., Billeter, M., and Braun, W., 1983. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance, J. Mol. Biol. 169:949.PubMedCrossRefGoogle Scholar
  275. Yeagle, P. L., Langdon, R. G., and Martin, R. G., 1977a. Phospholipid-protein interactions in human low density lipoprotein detected by 31P nuclear magnetic resonance, Biochemistry ,16:3487.PubMedCrossRefGoogle Scholar
  276. Yeagle, P. L., Hutton, W. C., Huang, C., and Martin, R. B., 1977b. Phospholipid head-group conformations; intermolecular interactions and cholesterol effects, Biochemistry 16:4344.PubMedCrossRefGoogle Scholar
  277. Yeagle, P. L., Martin, R. B., Pottenger, L., and Langdon, R. G., 1978. Location and interactions of phospholipid and cholesterol in human low density lipoprotein from 31P nuclear magnetic resonance, Biochemistry 17:2707.PubMedCrossRefGoogle Scholar
  278. Zaner, K. S., and Damadian, R., 1975. Phosphorous-31 as a nuclear probe for malignant tumors. Science 189:729.PubMedCrossRefGoogle Scholar
  279. Zuiderweg, E. R. P., Kaptein, R., and Wuthrich, K., 1983. Sequence-specific resonance assignments in the 1H nuclear-magnetic-resonance spectrum of the lac repressor DNA-binding domain 1–51 from Escherichia coli by two-dimensional spectroscopy, Eur. J. Biochem. 137:279.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Wright
    • 1
  • Wayne A. Hendrickson
    • 2
  • Shigemasa Osaki
    • 3
  • Gordon T. James
    • 4
  1. 1.Southeastern Oklahoma State UniversityDurantUSA
  2. 2.Columbia UniversityNew YorkUSA
  3. 3.Hybritech, Inc.San DiegoUSA
  4. 4.Health Sciences CenterUniversity of ColoradoDenverUSA

Personalised recommendations