Bioinorganic Topochemistry: Microprobe Methods of Analysis

  • John R. Wright
  • Wayne A. Hendrickson
  • Shigemasa Osaki
  • Gordon T. James
Part of the Biochemistry of the Elements book series (BOTE, volume 5)


Direct elemental ultramicroanalysis of biological samples is now possible, based on X-ray emission stimulated by a highly focused electron beam. This is an elegant extension of the X-ray spectrometric identification and quantitation method for specific elements. The method is made possible by combining either an energy- or a wavelength-dispersive X-ray spectrometer with a scanning electron microscope. The hybrid is appropriately described as a tool for inorganic topochemistry, since the beam may impinge upon a resolved structural feature while the X-ray emission spectrum is recorded. This procedure is especially valuable in that all of the elements heavier than beryllium may be specifically determined. Figure 11-1 presents a schematic representation on a typical electron microprobe instrument.


Electron Microprobe Microprobe Analysis Electron Microprobe Analysis Electron Probe Microanalysis Focus Electron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, C. A., 1967. An introduction to the electron probe microanalyzer and its application to biochemistry, in Methods of Biochemical Analysis ,Vol. 15 (D. Glick, ed.), Wiley-Interscience, New York, pp. 147–270.CrossRefGoogle Scholar
  2. Austin, J. H., 1978. Silicon levels in human tissues, Biochemistry of Silicon and Related Problems (G. Bendz and I. Lindquist, eds.), Plenum Press, New York, pp. 255–268.Google Scholar
  3. Banfield, W. G., Grimley, P. M., Hammond, W. G., Taylor, C. M., deFlorio, B., and Tousimis, A. J., 1971. Electron probe analysis for iodine in human thyroid and parathyroid glands, normal and neoplastic, J. Natl. Cancer Inst. 46:269.PubMedGoogle Scholar
  4. Bosch, F., Goresy, A. E., Martin, B., Bogdan, P., Nobiling, R., Schwalm, D., and Taxel, K., 1978. The proton microprobe: A powerful tool for nondestructive trace element analysis, Science 199:765.PubMedCrossRefGoogle Scholar
  5. Budnar, M., and Starc, V., 1982. Determination of trace elements in human urine, Period. Biol. 84:119.Google Scholar
  6. Cantley, L. C., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C., and Guidotti, G., 1977. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle, J. Biol. Chem. 252:7421.PubMedGoogle Scholar
  7. Chandler, F. W., Hicklin, M. D., and Blackman, J. A., 1977. Demonstration of the agent of Legionnaire’s disease in tissue, N. Engl. J. Med. 297:1218.PubMedCrossRefGoogle Scholar
  8. Chen, J. R., Francisco, R. B., and Miller, T. E., 1977. Legionnaire’s disease: Nickel levels, Science 196:906.PubMedCrossRefGoogle Scholar
  9. Coleman, J. R., DeWitt, S. M., Batt, P., and Terepka, A. R., 1970. Electron probe analysis of calcium distribution during active transport in chick chorioallantoic membrane, Exp. Cell Res. 63:216.PubMedCrossRefGoogle Scholar
  10. Cowley, J. M., 1982. Electron microscopy, Anal. Chem. 54:83R.CrossRefGoogle Scholar
  11. Echlin, P., and Saubermann, A. J., 1977. Preparation of biological specimens for X-ray microanalysis, in Scanning Electron Microscopy ,Vol. 1, IIT Research Institute, Chicago, pp. 621–634.Google Scholar
  12. Erasmus, D. (ed.), 1978. Electron Probe Microanalysis in Biology ,Chapman and Hall, London.Google Scholar
  13. Forslind, B., 1984. Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology, in Scanning Electron Microscopy (O. Johari, ed.), Scanning Electron Microscopy, Inc., Chicago, pp. 183–206.Google Scholar
  14. Galvan, M., Doerge, A., Beck, F., and Rick, R., 1984. Intracellular electrolyte concentrations in rat sympathetic neurons measured with an electron microprobe, Pfluegers Arch. 400:274.CrossRefGoogle Scholar
  15. Gavrilovic, J., and Brooks, D. A., 1982. Problems associated with computerized analysis of a large number of small particles, Microbeam Anal. 17:495.Google Scholar
  16. Gavrilovic, J., and Majewski, E., 1977. Use of ion and electron microprobes for full characterization of particulate matter, Am. Lab. 9:19.Google Scholar
  17. Geller, J. E., 1977. A comparison of minimum detection limits using energy and wavelength dispersive spectrometers, Scanning Electron Microsc. 10:281.Google Scholar
  18. Hall, T., 1968. Some aspects of the microprobe analysis of biological specimens, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.). National Bureau of Standards Special Publication 298, NBS, Washington, D.C., pp. 269–299.Google Scholar
  19. Hall, T. A., Hale, A. J., and Switsur, V. R., 1964. Some applications of microprobe analysis in biology and medicine, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), John Wiley and Sons, New York, pp. 805–833.Google Scholar
  20. Hamilton, W. J., Hinthorne. J. R., Ray, L. A., and Whatley, T. A., 1977. Automated electron microprobe analysis: A system for the ARL-SEMQ computer based on mass storage and speed capabilities of the flexible magnetic disk, Proc. Ann. Conf. Microbeam Anal. Soc. 12:52A.Google Scholar
  21. Heinrich, K. F. J. (ed.), 1968. Quantitative Electron Probe Microanalysis, National Bureau of Standards Special Publication 298, NBS, Washington, D.C., pp. 1–299.Google Scholar
  22. Heywood, J. A., 1979. Elemental analysis in the scanning electron microscope. Am. Lab. 11:101.Google Scholar
  23. Hren, J. J., Goldstein, J. I., and Joy, D. C. (eds.), 1979. Introduction to Analytical Electron Microscopy ,Plenum Press, New York.Google Scholar
  24. Karasek, F. W., 1970. The ion microanalyzer, Research/Develop. 21:32.Google Scholar
  25. Katz, S. M., and Nash, P. N., 1978. Legionnaire’s disease: Structural characteristics of the organism, Science 199:896.PubMedCrossRefGoogle Scholar
  26. Kawaguchi, H., and Vallee, B. L., 1975. Microwave excitation emission spectrometry; determination of picogram quantities of metals in metalloenzymes. Anal. Chem. 47:1029.PubMedCrossRefGoogle Scholar
  27. Kierszenbaum, A. L., Libanati, C. M., andTandler, C. J., 1971. The distribution of inorganic cations in mouse testis: Electron microscope and microprobe analysis, J. Cell Biol. 48:314.PubMedCrossRefGoogle Scholar
  28. Lechene, C. P., and Warner, R. R., 1977. Ultramicroanalysis: X-ray spectrometry by electron probe excitation, Annu. Rev. Biochem. Biophys. 6:57.CrossRefGoogle Scholar
  29. Marshall, A. T., and Forrest, Q. G., 1977. X-ray microanalysis in the transmission electron microscope at high accelerating voltages, Micron 8:135.Google Scholar
  30. Mellors, R. C., and Carroll, K. G., 1961. A new method for local chemical analysis of human tissue, Nature 192:1090.PubMedCrossRefGoogle Scholar
  31. Mellors, R. C., Carroll, K. G., and Solberg, T., 1964. Quantitative analysis of Ca/P molar ratios in bone tissue with the electron microprobe, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), John Wiley and Sons, New York, pp. 834–840.Google Scholar
  32. Robison, W. L., 1973. Application of the electron microprobe to the analysis of biological material in Microprobe Analysis (C. A. Andersen, ed.), Wiley-Interscience, New York, pp. 271–321.Google Scholar
  33. Russell, S. B., Schulte, C. W., Faiq, S., and Campbell, J. L., 1981. Specimen backings for proton-induced X-ray emission analysis, Anal. Chem. 53:571.CrossRefGoogle Scholar
  34. Shafer, P. W., and Chandler, J. A., 1970. Electron probe X-ray microanalysis of a normal centriole, Science 170:1204.CrossRefGoogle Scholar
  35. Silbergeld, E. K., and Costa, J. L., 1979. Synaptosomal Ca metabolism studies by electron microprobe analysis, Exp. Neurol. 63:277.PubMedCrossRefGoogle Scholar
  36. Smith, N. K. R., 1979. A review of sources of spurious silicon peaks in electron microprobe X-ray spectra of biological specimens, Anal. Biochem. 94:100.PubMedCrossRefGoogle Scholar
  37. Taniguchi, T., Harada, H., and Nakato, K., 1982. Mineral deposits in some tropical woody plants, Ann. Botany 50:559.Google Scholar
  38. Tousimis, A. J., and Adler, I., 1963. Electron probe X-ray microanalyzer study of copper within Descemet’s membrane of Wilson’s disease, J. Histochem. Cytochem. 11:40.CrossRefGoogle Scholar
  39. Tretyl, W. J., Orenberg, J. B., Marich, K. W., Saffir, A. J., and Glick, D., 1972. Detection limits in analysis of metals in biological materials by laser microprobe optical emission spectrometry, Anal. Chem. 44:1903.CrossRefGoogle Scholar
  40. Valkovic, V., 1980. Analysis of Biological Material for Trace Elements Using X-ray Spectroscopy ,CRC Press, Boca Raton, Florida.Google Scholar
  41. Verbueken, A. H., VanGrieken, R. E., Paulus, G. J., and De Bruijn, W. C, 1984. Embedded ion exchange beads as standards for laser microprobe mass analysis of biological specimens, Anal. Chem. 56:1362.CrossRefGoogle Scholar
  42. Wan, K. K., Boegman, R. J., and Barnett, R. I., 1982. Biochemical and morphological characteristics of calcium uptake by denervated skeletal muscle, Exp. Neurol. 78:205.PubMedCrossRefGoogle Scholar
  43. Watt, F., Grime, G. W., Takacs, J., and Vaux, D. J. T., 1984. Oxford scanning proton microprobe; A medical diagnostic application, Gov. Rep. Announce. Index (U.S.) 84:59.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Wright
    • 1
  • Wayne A. Hendrickson
    • 2
  • Shigemasa Osaki
    • 3
  • Gordon T. James
    • 4
  1. 1.Southeastern Oklahoma State UniversityDurantUSA
  2. 2.Columbia UniversityNew YorkUSA
  3. 3.Hybritech, Inc.San DiegoUSA
  4. 4.Health Sciences CenterUniversity of ColoradoDenverUSA

Personalised recommendations