Dorsal Horn Neurons and Their Sensory Inputs

  • Fernando Cervero


The mammalian skin is innervated by a variety of afferent nerve fibers connected to highly specialized sensory detectors whose adequate stimulation leads to the experience of tactile, thermal, or painful sensations. Microneurographic studies of human sensory nerves have demonstrated a direct correlation between the functional properties of a given sensory detector and the elementary sensory experience evoked by its stimulation (Ochoa and Torebjörk, 1983). Under normal circumstances, this elementary specificity of cutaneous sensory receptors (see Winkelmann, Chapter 2, and Campbell and Meyer, Chapter 3) is subjected to the integrative and modulatory influences of the central nervous system. Therefore, complex sensory perceptions are the consequence of the activation of specific sensory channels whose output can be profoundly modified by the activity of other pathways within the central nervous system.


Spinal Cord Dorsal Horn Spinal Dorsal Horn Thoracic Spinal Cord Superficial Dorsal Horn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bicknell, H. R., and Beal J. S. Axonal and dendritic development of substantia gelatinosa neurons in the lumbosacral spinal cord of the rat. J. Comp. Neurol. 226:508–522, 1984.PubMedCrossRefGoogle Scholar
  2. Brown, A. G. Organisation in the Spinal Cord. Springer Verlag, Heidelberg, 1981.CrossRefGoogle Scholar
  3. Brown, A. G., and Iggo, A. A quantitative study of cutaneous receptors and afferent fibres in the cat and rabbit. J. Physiol. (Lond.) 193:707–733, 1967.Google Scholar
  4. Brown, A. G., and Rethelyi, M. Spinal Cord Sensation. Scottish Academic Press, Edinburgh, 1981.Google Scholar
  5. Carroll, L. Through the Looking Glass, Puffin Books, 1872, reprinted 1962.Google Scholar
  6. Cervero, F. Noxious intensities of visceral stimulation are required to activate viscero-somatic multireceptive neurones in the thoracic spinal cord of the cat. Brain Res. 240:350–352, 1982.PubMedCrossRefGoogle Scholar
  7. Cervero, F. Somatic and visceral inputs to the thoracic spinal cord of the cat: Effects of noxious stimulation of the biliary system. J. Physiol. (Lond.) 337:51–67, 1983a.Google Scholar
  8. Cervero, F. Supraspinal connections of neurons in the thoracic spinal cord of the cat: Ascending projections and effects of descending impulses. Brain Res. 275:251–261, 1983b.PubMedCrossRefGoogle Scholar
  9. Cervero, F., and Connell, L. A. Fine afferent fibres from viscera do not terminate in the substantia gelatinosa of the thoracic spinal cord. Brain Res. 294:370–374, 1984.PubMedCrossRefGoogle Scholar
  10. Cervero, F., and Iggo, A. Natural stimulation of urinary bladder Afferents does not affect transmission through lumbrosacral spinocervical tract neurones in the cat. Brain Res. 156:375–379, 1978.PubMedCrossRefGoogle Scholar
  11. Cervero, F., and Iggo, A. The substantia gelatinosa of the spinal cord: A critical review. Brain 103:717–772, 1980.PubMedCrossRefGoogle Scholar
  12. Cervero, F., Iggo, A., and Ogawa, H. Nociceptor-driven dorsal horn neurones in the lumbar spinal cord of the cat. Pain 1:5–24, 1976.CrossRefGoogle Scholar
  13. Cervero, F., Iggo, A., and Molony, V. Ascending projections of nociceptor-driven lamina I neurones in the cat. Exp. Brain Res. 35:135–149, 1979a.PubMedCrossRefGoogle Scholar
  14. Cervero, F., Iggo, A., and Molony, V. An electrophysiological study of neurones in the substantia gelatinosa Rolandi of the cat’s spinal cord. Q. J. Exp. Physiol. 64:297–314, 1979b.PubMedGoogle Scholar
  15. Cervero, F., Connell, L. A., and Lawson, S. N. Somatic and visceral primary Afferents in the lower thoracic dorsal root ganglia of the cat. J. Comp. Neurol. 228:422–431, 1984a.PubMedCrossRefGoogle Scholar
  16. Cervero, F., Schouenborg, J., Sjölund, B. H. and Waddell, P. J. Cutaneous inputs to dorsal horn neurons in adult rats treated at birth with capsaicin. Brain Res. 301:47–57, 1984b.PubMedCrossRefGoogle Scholar
  17. Christensen, B. N., and Perl, E. R. Spinal neurones specifically excited by noxious or thermal stimuli: Marginal zone of the dorsal horn. J. Neurophysiol. 33:293–307, 1970.PubMedGoogle Scholar
  18. Coimbra, A., Sodre-Borges, B. P., and Magalhaes, M. M. The substantia gelatinosa Rolandi of the rat. Fine structure, cytochemistry (acid phosphatase) and changes after dorsal root section. J. Neurocytol. 3:199–217, 1974.PubMedCrossRefGoogle Scholar
  19. Craig, A. D., and Mense, S. The distribution of afferent fibres from the gastrocnemius-soleus muscle in the dorsal horn of the cat, as revealed by the transport of HRP. Neurosci. Lett. 41:233–238, 1983.PubMedCrossRefGoogle Scholar
  20. Dickenson, A. H., Hellon, R. F., and Taylor, D. C. M. Facial thermal input to the trigeminal spinal nucleus of rabbits and rats. J. Comp. Neurol. 185:203–210, 1979.PubMedCrossRefGoogle Scholar
  21. Falls, W., and Gobel, S. Golgi and EM studies of the formation of dendritic and axonal arbors: The interneurones of the substantia gelatinosa of Rolando in newborn kittens. J. Comp. Neurol. 187:1–18, 1979.PubMedCrossRefGoogle Scholar
  22. Foreman, R. D., and Ohata, C. A. Effects of coronary artery occlusion on thoracic spinal neurones receiving viscero-somatic inputs. Am. J. Physiol. 238:H667–H674, 1980.PubMedGoogle Scholar
  23. Foreman, R. D., and Weber, R. N. Responses from neurones of the primate spinothalamic tract to electrical stimulation of Afferents from the cardiopulmonary region and somatic structures. Brain Res. 186:463–468, 1980.PubMedCrossRefGoogle Scholar
  24. Gobel, S. Dendroaxonic synapses in the substantia gelatinosa glomeruli of the spinal trigeminal nucleus of the cat. J. Comp. Neurol. 167:165–176, 1976.CrossRefGoogle Scholar
  25. Gobel, S. Golgi studies of the neurones in layer I of the dorsal horn of the medulla (trigeminal nucleus caudalis). J. Comp. Neurol. 180:375–394, 1978a.PubMedCrossRefGoogle Scholar
  26. Gobel, S. Golgi studies of the neurones in layer II of the dorsal horn of the medula (trigeminal nucleus caudalis). J. Comp. Neurol. 180:395–414, 1978b.PubMedCrossRefGoogle Scholar
  27. Gokin, A. P. Synaptic activation of interneurones in the thoracic spinal cord by cutaneous muscle and visceral Afferents. Neurofiziologiia (Moscow) 2:563–572, 1970.Google Scholar
  28. Guilbaud, G., Benelli, G., and Besson, S. M. Response of thoracic dorsal horn interneurones to cutaneous stimulation and to the administration of algogenic substances into the mesenteric artery in the spinal cat. Brain Res. 124:437–448, 1977.PubMedCrossRefGoogle Scholar
  29. Hancock, M. B. Foreman, R. D., and Willis, W. D. Convergence of visceral and cutaneous input onto spinothalamic tract cells in the thoracic spinal cord of the cat. Exp. Neurol. 47:240–248, 1975.PubMedCrossRefGoogle Scholar
  30. Handwerker, H. O., Iggo, A., and Zimmermann, M. Segmental and supraspinal actions on dorsal horn neurones responding to noxious and nonnoxious skin stimuli. Pain 1:147–166, 1975.PubMedCrossRefGoogle Scholar
  31. Hellon, R. F., and Misra, N. K. Neurones in the dorsal horn of the rat responding to scrotal skin temperature changes. J. Physiol. (Lond.) 232:375–388, 1973.Google Scholar
  32. Hunt, S. P., Kelly, J. S., Emson, P. C., Kimmel, J. R., Miller, R. J., and Wu, J. Y. An immunohistochemical study of neuronal populations containing neuropeptides of γ-aminobutyrate within the superficial clayers of the rat dorsal horn. Neuroscience 6:1883–1898, 1981.PubMedCrossRefGoogle Scholar
  33. Iggo, A. Cutaneous mechanoreceptors with afferent C fibres. J. Physiol. (Lond.) 152:337–353, 1960.Google Scholar
  34. Iggo, A. Cutaneous thermoreceptors in primates and sub-primates. J. Physiol. (Lond.) 200:403–430, 1969.Google Scholar
  35. Iggo, A. Activation of cutaneous nociceptors and their actions on dorsal horn neurones. Adv. Neurol. 4:1–9, 1974.Google Scholar
  36. Iggo, A., and Ramsey, R. L. Thermosensory mechanisms in the spinal cord of monkeys, in: Sensory Functions of the Skin (Y. Zotterman, ed.), Pergammon Press, New York, 1976, pp. 285–304.Google Scholar
  37. Le Bars, D., and Chitour, D. DO convergent neurones in the spinal dorsal horn discriminate nociceptive from non-nociceptive information? Pain 17:1–19, 1983.PubMedCrossRefGoogle Scholar
  38. Light, A. R., and Perl, E. R. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibres. J. Comp. Neurol. 186:117–132, 1979a.PubMedCrossRefGoogle Scholar
  39. Light, A. R., and Perl, E. R. Spinal termination of functionally identified primary afferent neurones with slowly conducting myelinated fibers. J. Comp. Neurol. 186:133–150, 1979b.PubMedCrossRefGoogle Scholar
  40. Light, A. R., Trevino, D. L., and Perl, E. R. Morphological features of functionally defined neurones in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J. Comp. Neurol. 186:151–172, 1979.PubMedCrossRefGoogle Scholar
  41. Mendell, L. M. Physiological properties of unmyelinated fiber projection to the spinal cord. Exp. Neurol, 16:316–332, 1966.PubMedCrossRefGoogle Scholar
  42. Mense, A., Light, A. R., and Perl, E. F. Spinal terminations of subcutaneous high-threshold mechanoreceptors, in: Spinal Cord Sensation (A. G. Brown and M. Rethelyi, eds.), Scottish Academic Press, Edinburgh, 1981, pp. 79–86.Google Scholar
  43. Milne, R. J., Foreman, R. D., Giesler, G. J., Jr., and Willis, W. D. Convergence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurones. Pain 11: 153–184, 1981.CrossRefGoogle Scholar
  44. Molony, F., Steedman, W. M., Cervero, F., and Iggo, A. Intracellular marking of identified neurons in the superficial dorsal horn of the cat spinal cord. Q. J. Exp. Physiol. 66:211–223, 1981.PubMedGoogle Scholar
  45. Morgan, C., Nadelhaft, I., and de Groat, W. The distribution of visceral primary Afferents from the pelvic nerve to Lissauer’s tract and the spinal gray metter and its relationship to the sacral parasympathetic nucleus. J. Comp. Neurol. 201:415–440, 1981.PubMedCrossRefGoogle Scholar
  46. Ochoa, J., and Torebjörk, E. Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J. Physiol. (Lond.) 341:633–654, 1983.Google Scholar
  47. Pomeranz, B., Wall, P. D., and Weber, W. V. Cord cells responding to fine myelinated Afferents from viscera, muscle and skin. J. Physiol. (Lond.) 199:511–532, 1968.Google Scholar
  48. Ramon Y Cajal, S. La sustancia gelatinosa de Rolando, in: Pequenas Contribuciones al Conocimiento del Sistema Nervioso, Casa Provincial de Caridad, Barcelona, 1891, pp. 50–53.Google Scholar
  49. Ramon Y Cajal, S. Histologie du Systeme Nerveux de l’Homme et des Vertebres, Vol. I, Maloine, Paris, 1909.Google Scholar
  50. Rexed, B. The cytoarchitectonic organisation of the spinal cord in the cat. J. Comp. Neurol. 96:415–495, 1952.CrossRefGoogle Scholar
  51. Ribeiro da Silva, A., and Coimbra, A. Capsaicin causes selective damage to type I synaptic glomeruli in rat substantia gelatinosa. Brain Res. 290:380–383, 1984.PubMedCrossRefGoogle Scholar
  52. Ruch, T. C. Visceral sensation and referred pain, in: Howe’s Textbook of Physiology (J. F. Fulton, ed.), W. B. Saunders, Philadelphia, 1947, pp. 385–401.Google Scholar
  53. Wall, P. D. The laminar organisation of dorsal horn and effects of descending impulses. J. Physiol. (Lond.) 188:403–423, 1967.Google Scholar
  54. Wall, P. D. Dorsal horn electrophysiology, in: Handbook of Sensory Physiology, Vol. 2 (A. Iggo, ed.), Springer Verlag, Berlin, Heidelberg, New York, 1973, pp. 253–270.Google Scholar
  55. Wall, P. D., Fitzgerald, M., Nussbaumer, J. C., van de RLoos H., and Devor, M. Somatotopic maps are disorganised in adult rodents treated neonatally with capsaicin. Nature 295:691–693, 1982.PubMedCrossRefGoogle Scholar
  56. Willis, W. D., and Coggeshall, R. E. Sensory Mechanisms of the Spinal Cord, John Wiley & Sons, New York, 1978, p. 477.CrossRefGoogle Scholar
  57. Willis, W. D., Trevino, D. L., Coulter, S. D., and Maunz, R. A. Responses of primate spinothalamic tract neurones to natural stimulation of hindlimb. J. Neurophysiol. 37:358–372, 1974.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Fernando Cervero
    • 1
  1. 1.Department of Physiology, The Medical SchoolUniversity of BristolBristolEngland

Personalised recommendations