The Pattern and Place of Nociceptive Modulation in the Dorsal Horn

A Discussion of the Anatomically Characterized Neural Circuitry of Enkephalin, Serotonin, and Substance P
  • M. A. Ruda


Recent technical innovations have advanced the study of the mechanisms of pain and analgesia. These advances have resulted in an increased understanding of the anatomical organization of the dorsal horn at the medullary and spinal levels. Studies employing immunocytochemical labeling of neurotransmitters, retrograde transport of HRP, and intracellular HRP techniques have been at the forefront. The greatest strides, however, have been made when two of these approaches were combined in a single experiment to identify relationships between two labeled elements simultaneously. Many of the multiple-label experiments that were first accomplished in the dorsal horn are applicable throughout the nervous system. The observations are useful from the perspective of basic concepts of neural circuitry as well as a characterization of the pathways involved in pain and analgesia. Study of the spinal cord dorsal horn offers a unique advantage in that it contains many of the identified substances in the nervous system that act as neurotransmitters or neuromodulators (Table I). These neurochemicals include both classical neurotransmitters such as the monoamines and amino acids as well as recently discovered families of neuropeptides. This chapter seeks to address some of the fundamental observations on the anatomical and neurochemical organization of the dorsal horn and to apply the findings to basic issues of integration in the nervous system as well as to the study of pain and analgesia.


Dorsal Horn Projection Neuron Dorsal Horn Neuron Superficial Dorsal Horn Substantia Gelatinosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronin, N., DiFiglia, M., Liotta, A. S., and Martin, J. B. Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn. J. Neurosci. 1:561–577, 1981.PubMedGoogle Scholar
  2. Barber, R. P., Vaughn, J. E., Sherman, J. R., Salvaterra, P. M., Roberts, E., and Leeman, S. E. The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J. Comp. Neurol. 184:331–352, 1979.PubMedCrossRefGoogle Scholar
  3. Basbaum, A. I. Anatomical substrates for the descending control of nociception, in: Brain Stem Control of Spinal Mechanisms (B. Sjöland and A. Björklund, eds.), Elsevier, Amsterdam, 1982, pp. 119–133.Google Scholar
  4. Basbaum, A. I., Clanton, C. H., and Fields, H. L. Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. J. Comp. Neurol. 1:209–224, 1978.CrossRefGoogle Scholar
  5. Bennett, G. J., Abdelmoumene, M., Hayashi, H., and Dubner, R. Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J. Comp. Neurol. 194:809–827, 1980.PubMedCrossRefGoogle Scholar
  6. Bennett, G. J., Abdelmoumene, M., Hayashi, H., Hoffert, M. J., and Dubner, R. Spinal cord layer I neurons with axon collaterals that generate local arbors. Brain Res. 209:421–426, 1981a.PubMedCrossRefGoogle Scholar
  7. Bennett, G. J., Abdelmoumene, M., Hayashi, H., Hoffert, M. J., Ruda, M. A., and Dubner, R. Physiology, morphology and immunocytology of dorsal horn layer III neurons. Pain [Suppl.] 1:S240, 1981b.CrossRefGoogle Scholar
  8. Bennett, G. J., Ruda, M. A., Gobel, S., and Dubner, R. Enkephalin immunoreactive stalked cells and lamina IIb islet cells in cat substantia gelatinosa. Brain Res. 240:162–166, 1982.PubMedCrossRefGoogle Scholar
  9. Bowker, R. M., Steinbusch, H. W. M., and Coulter, J. D. Serotonergic and peptidergic projections to the spinal cord demonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method. Brain Res. 211:412–417, 1981a.PubMedCrossRefGoogle Scholar
  10. Bowker, R. M., Westlund, K. N., and Coulter, J. D. Origins of serotonergic projections to the spinal cord in rat: An immunocytochemical-retrograde transport study. Brain Res. 226:187–199, 1981b.PubMedCrossRefGoogle Scholar
  11. Burton, H., and Craig, A. D., Jr. Distribution of trigeminothalamic projection cells in cat and monkey. Brain Res. 161:515–521, 1979.PubMedCrossRefGoogle Scholar
  12. Carstens, F., and Trevino, D. L. Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 182:151–166, 1978.CrossRefGoogle Scholar
  13. Cuello, A. C., de LFiacco, M., and Paxinos, G. The central and peripheral ends of the substance P-containing sensory neurones in the rat trigeminal system. Brain Res. 152:499–509, 1978.PubMedCrossRefGoogle Scholar
  14. Dahlström, A., and Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. [Suppl.] 232:1–55, 1964.Google Scholar
  15. Dahlström, A., and Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous sytem. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. [Suppl] 247:7–36, 1965.Google Scholar
  16. Delanerolle, N. C., and LaMotte, C. C. Ultrastructure of chemically denned neuron systems in the dorsal horn of the monkey. I. Substance P immunoreactivity. Brain Res. 274:31–49, 1983.CrossRefGoogle Scholar
  17. DiFiglia, M., Aronin, N., and Leeman, S. E. Light microscopic and ultrastructural localization of immunoreactive substance P in the dorsal horn of monkey spinal cord. Neuroscience 7:1127–1139, 1982.PubMedCrossRefGoogle Scholar
  18. Dubner, R., and Bennett, G. J. Spinal and trigeminal mechanisms of nociception. Annu. Rev. Neurosci. 6:381–418, 1983.PubMedCrossRefGoogle Scholar
  19. Dubner, R., Ruda, M. A., Miletic, V., Hoffert, M. J., Bennett, G. J., Nishikawa, N., and Coffield, J. Neural circuitry mediating nociception in the medullary and spinal dorsal horns, in: Advances in Pain Research and Therapy, Vol. 6 (L. Kruger and J. C. Liebeskind, eds.), Raven Press, New York, 1984, pp. 151–166.Google Scholar
  20. Gibson, S. J., Polak, J. M., Bloom, S. R., and Wall, P. D. The distribution of nine peptides in rat spinal cord with special emphasis on the substantia gelatinosa and on the area around the central canal (lamina X). J. Comp. Neurol. 201:65–79, 1981.PubMedCrossRefGoogle Scholar
  21. Giesler, G. J., Jr., Menetrey, D., and Basbaum, A. I. Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. J. Comp. Neurol. 184:107–126, 1979.PubMedCrossRefGoogle Scholar
  22. Giesler, G. J., Jr., Yezierski, R. P., Gerhart, K. D., and Willis, W. D. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiologically novel population of spinal cord neurons. J. Neurophysiol. 46:1285–1308, 1981.PubMedGoogle Scholar
  23. Gilbert, R. F. T., Emson, P. C., Hunt, S. P., Bennett, G. W., Marsden, C. A., Sandberg, B. E. B., Steinbusch, H. W. M., and Verhofstad, A. A.J. Effects of monoamine neurotoxins on peptides in the rat spinal cord. Neuroscience 7:69–87, 1982.PubMedCrossRefGoogle Scholar
  24. Glazer, E. J., and Basbaum, A. I. Immunohistochemical localization of leucine-enkephalin in the spinal cord of the cat. Enkephalin-containing marginal neurons and pain modulation. J. Comp. Neurol. 196:377–389, 1981.PubMedCrossRefGoogle Scholar
  25. Glazer, E. J., and Basbaum, A. I. Opiate neurons and pain modulation: An ultrastructural analysis of enkephalin in cat superficial dorsal horn. Neuroscience 10:357–376, 1982.CrossRefGoogle Scholar
  26. Glazer, E. J., and Basbaum, A. I. Axons which take up [3H]serotonin are presynaptic to enkephalin immunoreactive neuron in cat dorsal horn. Brain Res. 298:386–391, 1984.PubMedCrossRefGoogle Scholar
  27. Hockfield, S., and Gobel, S. Neurons in and near nucleus caudalis with long ascending projection axons demonstrated by retrograde labeling with horseradish peroxidase. Brain Res. 139:333–339, 1978.PubMedCrossRefGoogle Scholar
  28. Hoffert, M. J., Miletic, V., Ruda, M. A., and Dubner, R. A comparison of substance P and serotonin axonal contacts on identified neurons in cat spinal dorsal horn. Soc. Neurosci. Abstr. 8:805, 1982.Google Scholar
  29. Hoffert, M. J., Miletic, V., Ruda, M. A., and Dubner, R. Immunocytochemical identification of serotonin axonal contacts on characterized neurons in laminae I and II of the cat dorsal horn. Brain Res. 267:361–364, 1983.PubMedCrossRefGoogle Scholar
  30. Hökfelt, T., Kellerth, J. O., Nilsson, G., and Pernow, B. Substance P localization in the central nervous system and in some primary sensory neurons. Science 190:889–890, 1975a.PubMedCrossRefGoogle Scholar
  31. Hökfelt, T., Kellerth, J. O., Nilsson, G., and Pernow, B. Experimental immunohistochemical studies on the localization and distribution of substance P in the cat primary sensory neurons. Brain Res. 100:235–252, 1975b.PubMedCrossRefGoogle Scholar
  32. Hökfelt, T., Ljungdahl, A., Terenius, L., Elde, R., and Nilsson, G., Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and substance P. Proc. Natl. Acad. Sci. U.S.A. 74:3081–3085, 1977.PubMedCrossRefGoogle Scholar
  33. Hökfelt, T., Terenius, L., Kuypers, H. G. J. M., and Dann, O. Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord. Neurosci. Lett. 14:55–60, 1979.PubMedCrossRefGoogle Scholar
  34. Hunt, S. P., Kelly, J. S., and Emson, P. C. The electron microscopic localization of methionine-enkephalin within the superficial layers (I and II) of the spinal cord. Neuroscience 5:1871–1890, 1980.PubMedCrossRefGoogle Scholar
  35. Hunt, S. P., Kelly, J. S., Emson, P. C., Kimmel, J. R., Miller, R. J., and Wu, J. Y. An immunohistochemical study of neuronal populations containing neuropeptides or gamma-ami-nobutyrate within the superficial layers of the rat dorsal horn. Neuroscience 6:1883–1898, 1981.PubMedCrossRefGoogle Scholar
  36. Jessell, T., Tsunoo, A., Kanazawa, I., and Otsuka, M. Substance P: Depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res. 168:247–259, 1979.PubMedCrossRefGoogle Scholar
  37. Kenshalo, D. R., Jr., Leonard, R. B., Chung, J. M., and Willis, W. D. Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli J. Neurophysiol. 42:1370–1389, 1979.PubMedGoogle Scholar
  38. LaMotte, C. C., and Delanerolle, N. C. Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. II. Methionine-enkephalin immunoreactivity. Brain Res. 274:51–63, 1983a.PubMedCrossRefGoogle Scholar
  39. LaMotte, C. C., and Delanerolle, N. C. Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. III. Serotonin immunoreactivity. Brain Res. 274:65–77, 1983b.PubMedCrossRefGoogle Scholar
  40. Light, A. R., Trevino, D. L., and Perl, E. R. Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J. Comp. Neurol. 186:151–171, 1979.PubMedCrossRefGoogle Scholar
  41. Light, A. R., Kavookjian, A. M., and Petrusz, P. The ultrastructure and synaptic connections of serotonin-immunoreactive terminals in spinal laminae I and II. Somatosens. Res. 1:33–50, 1983.PubMedCrossRefGoogle Scholar
  42. Ljungdahl, A., Hökfelt, T., and Nilsson, G. Distribution of substance P-immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3:861–943, 1978.PubMedCrossRefGoogle Scholar
  43. Massari, V. J., Tizabi, Y., Park, C. H., Moody, T. W., Helke, C. J., and O’donohue, T. L. Distribution and origin of bombesin, substance P and somatostatin in cat spinal cord. Peptides 4:673–681, 1983.PubMedCrossRefGoogle Scholar
  44. Miletic, V., Hoffert, M. J., Ruda, M. A., Dubner, R., and Shigenaga, Y. Serotonergic axonal contacts on identified cat spinal dorsal horn neurons and their correlation with nucleus raphe magnus stimulation. J. Comp. Neurol. 228:129–141, 1984.PubMedCrossRefGoogle Scholar
  45. Narotsky, R. A., and Kerr, F. W. L. Marginal neurons of the spinal cord: Types, afferent synaptology and functional considerations. Brain Res. 139:1–20, 1978.CrossRefGoogle Scholar
  46. Nishikawa, N., Bennett, G. J., Ruda, M. A., Lu, G.-W., and Dubner, R. Immunocytochemical evidence for a serotonergic innervation of dorsal column postsynaptic neurons in cat and monkey. Neuroscience 10:1333–1340, 1983.PubMedCrossRefGoogle Scholar
  47. Pickel, V. M., Reis, D. J., and Leeman, S. E. Ultrastructure of substance P in neurons of rat spinal cord. Brain Res. 122:534–540, 1977.PubMedCrossRefGoogle Scholar
  48. Price, D. D., Dubner, R., and Hu, J. W. Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive stimulation of monkey’s face. J. Neurophysiol. 39:936–953, 1976.PubMedGoogle Scholar
  49. Price, D. D., Hayashi, H., Dubner, R., and Ruda, M. A. Functional relationships between neurons of marginal and substantia gelatinosa layers of primate dorsal horn. J. Neurophysiol. 42:1590–1608, 1979.PubMedGoogle Scholar
  50. Priestley, J. V., Somogyi, P., and Cuello, A. C. Immunocytochemical localization of substance P in the trigeminal nucleus of the rat: A light and electron microscopic study. J. Comp. Neurol. 211:31–49, 1982.PubMedCrossRefGoogle Scholar
  51. Priestley, J. V., and Cuello, A. C. Substance P immunoreactive terminals in the spinal trigeminal nucleus synapse with lamina I neurons projecting to the thalamus, in: Substance P (P. Skraborek and D. Powell, eds.), Book Press, Dublin, 1983, pp. 251–252.Google Scholar
  52. Ralston, H. J. III, and Ralston, D. D. The distribution of dorsal root axons in laminae I, II and III of the macaque spinal cord: A quantitative electron microscope study. J. Comp. Neurol 184:643–684, 1979.PubMedCrossRefGoogle Scholar
  53. Ruda, M. A. Opiates and pain pathways: Demonstration of enkephalin synapses on dorsal horn projection neurons. Science 215:1523–1525, 1982.PubMedCrossRefGoogle Scholar
  54. Ruda, M. A., Coffield, J., and Steinbusch, H. W. M. Immunocytochemical analysis of serotonergic axons in laminae I and II of the lumbar spinal cord of the cat. J. Neurosci. 2:1660–1671, 1982.PubMedGoogle Scholar
  55. Ruda, M. A., Coffield, J., Bennett, G. J., and Dubner, R. Role of serotonin (5-HT) and enkephalin (ENK) in trigeminal and spinal pain pathways. J. Dent. Res. 62:691, 1983.Google Scholar
  56. Ruda, M. A., and Coffield, J., Light and ultrastructural immunocytochemical localization of serotonin synapses on primate spinothalamic tract neurons. Soc. Neurosci. Abstr. 9:1, 1983.Google Scholar
  57. Ruda, M. A., Coffield, J., and Dubner, R. Demonstration of postsynaptic opioid modulation of thalamic projection neurons by the combined techniques of retrograde horseradish peroxidase and enkephalin immunocytochemistry. J. Neurosci. 4:2117–2132, 1984.PubMedGoogle Scholar
  58. Sar, M., Stumpf, W. E., Miller, R. J., Chang, K.J., and Cuatrecasas, P. Immunohistochemical localization of enkephalin in rat brain and spinal cord. J. Comp. Neurol. 182:17–38, 1978.PubMedCrossRefGoogle Scholar
  59. Seybold, V., and Elde, R. Immunohistochemical studies of peptidergic neurons in the dorsal horn of the spinal cord. J. Histochem. Cytochem. 28:367–370, 1980.PubMedCrossRefGoogle Scholar
  60. Steinbusch, H. W. M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals. Neuroscience 6:557–618, 1981.PubMedCrossRefGoogle Scholar
  61. Sumal, K., K., Pickel, V. M., Miller, R. J., and Reis, D. J. Enkephalin-containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructure and synaptic interaction with primary sensory Afferents. Brain Res. 248:223–236, 1982.PubMedCrossRefGoogle Scholar
  62. Takahashi, T., and Otsuka, M. Regional distribution of substance P in the spinal cord and nerve roots of the cat and the effect of dorsal root section. Brain Res. 87:1–11, 1975.PubMedCrossRefGoogle Scholar
  63. Tessler, A., Himes, B. T., Artmyshyn, R., Murray, M., and Goldberger, M. E. Spinal neurons mediate return of substance P following deafferentation of cat spinal cord. Brain Res. 230:263–281, 1981.PubMedCrossRefGoogle Scholar
  64. Trevino, D. L., Maunz, R. A., Bryan, R. N., and Willis, W. D. Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp. Neurol. 34:64–77, 1972.PubMedCrossRefGoogle Scholar
  65. Uhl, G. R., Goodman, R. R., Kuhar, M. J., Children, S. R., and Snyder, S. H. Immunohistochemical mapping of enkephalin containing cell bodies, fibers and nerve terminals in the brain stem of the rat. Brain Res. 166:75–94, 1979.PubMedCrossRefGoogle Scholar
  66. Willcockson, W. S., Chung, J. M., Hori, Y., Lee, K. H., and Willis, W. D. Effects of ionto-phoretically released amino acids and amines on primate spinothalamic tract cells. J. Neurosci. 4:732–740, 1984a.PubMedGoogle Scholar
  67. Willcockson, W. S., Chung, J. M., Hori, Y., Lee, K. H., and Willis, W. D. Effects of ionto-phoretically released peptides on primate spinothalamic tract cells. J. Neurosci. 4:741–750, 1984b.PubMedGoogle Scholar
  68. Willis, W. D., Kenshalo, D. R., Jr, and Leonard, R. B. The cells of origin of the primate spinothalamic tract. J. Comp. Neurol. 188:543–574, 1979.PubMedCrossRefGoogle Scholar
  69. Willis, W. D., Trevino, D. L., Coulter, J. D., and Maunz, R. A. Responses to primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol. 37:358–372, 1974.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • M. A. Ruda
    • 1
  1. 1.Neurobiology and Anesthesiology Branch, National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA

Personalised recommendations