Advertisement

Neurotransmitter Receptor Sites in the Spinal Cord

  • Virginia S. Seybold

Abstract

Since the studies discussed in this chapter concern the distribution of receptors for neurotransmitters, it is important to specify that the term “receptor” implies a physiologically functional unit. Binding of a transmitter molecule to its binding site on the neuronal membrane surface initiates a physical change in the receptor unit that results in a physiological change, i.e., a change in membrane ion permeability (nicotinic cholinergic receptor) or activation of an enzyme resulting in a change in the level of a biochemical intermediate within the cell (β-adrenergic receptors and many peptide hormone receptors). Binding studies and autoradiograms, however, reflect just the binding site portion of the receptor unit, and such data must be described in terms of binding sites. However, the radiolabeled ligands used to prepare the autoradiograms are pharmacologically active compounds whose physiological effects on the system may be well characterized. Therefore, in this discussion of the biological significance of binding sites, I refer to them as receptors.

Keywords

Spinal Cord Dorsal Root Ganglion Dorsal Horn Primary Afferent Neuron Central Canal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, G. M., Schwartzman, R. J., Bell, R. D., Yu, J., and Renthal, A. Quantitative measurement of local cerebral metabolic rate for glucose utilizing tritiated 2-deoxyglucose. Brain Res. 223:59–67, 1981.PubMedCrossRefGoogle Scholar
  2. Aronin, N., DiFiglia, M., Liotta, A. S., and Martin, J. S. Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn. J. Neurosci. 1:561–577, 1981.PubMedGoogle Scholar
  3. Astrachan, D. I., Davis, M., and Gallager, D. W. Behaviour and binding: Correlations between alpha-1 adrenergic stimulation of acoustic startle and alpha-1 adrenoceptor occupancy and number in rat lumbar spinal cord. Brain Res. 260:81–90, 1983.PubMedCrossRefGoogle Scholar
  4. Atvveh, S. F., and Klhar, M. J., Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res. 124:53–67, 1977.CrossRefGoogle Scholar
  5. Barber, R. P., Vaughn, J. E., Saito, K., Mc Laughlin, S. J., and Roberts, E. Gabaergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res. 141:35–55, 1978.PubMedCrossRefGoogle Scholar
  6. Barber, R. P., Vaughn, J. E., Slemmon, J. R., Salvaterra, P. M., Roberts, E., and Leeman, S. E. The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J. Comp. Neurol, 184:331–352, 1979.PubMedCrossRefGoogle Scholar
  7. Basbaum, A. I., and Glazer, E. J. Immunoreactive vasoactive intestinal polypeptide is concentrated in the sacral spinal cord: A possible marker for pelvic visceral afferent fibers. Sornatosens. Res. 1:69–82, 1983.CrossRefGoogle Scholar
  8. Blackshear, M. A., Steranka, L. R., and Sanders-Bush, E. Multiple serotonin receptors: Regional distribution and effect of raphe lesions. Eur. J. Pharmacol. 76:325–334, 1981.PubMedCrossRefGoogle Scholar
  9. Carlsson, J., Falk, B., Fuxe, K., and Hillary, N.J., Cellular localization of monoamines in the spinal cord. Acta. Physiol. Scand, 60:112–119, 1964.PubMedCrossRefGoogle Scholar
  10. Dahlstrom, A., and Fuxe, K. Evidence for the existence of monoamine containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. [Suppl.] 247:1–36, 1965.Google Scholar
  11. Dalsgaard, C.-J., Vincent, S. R., Hökfelt, T., Lundberg, J. M., Dahlstrom, A., Schultzberg, M., Dockray, G. J., and Cuello, A. C. Coexistence of cholecystokinin-and substance P-like peptides in neurons of the dorsal root ganglia of the rat. Neurosci. Lett. 33:159–163, 1982.PubMedCrossRefGoogle Scholar
  12. Demenge, P., Feuerstein, C., Mouchet, P., and Guerin, B. Stereospecific binding of [3H]-haloperidol in rat dorsal spinal cord. Eur. J. Pharmacol. 66:117–120, 1980.PubMedCrossRefGoogle Scholar
  13. Demenge, P., Mouchet, P., Guerin, B., and Feuerstein, C. Identification and distribution of neuroleptic binding sites in the rat spinal cord. J. Neurochem. 37:53–59, 1981.PubMedCrossRefGoogle Scholar
  14. Descarries, L., and Lapierre, Y. Noradrenergic axon terminals in the cerebral cortex of the rat. I. Radioautographic visualization after topical application of dl-[3H]-norepinephrine. Brain Res. 51:141–160, 1973.PubMedCrossRefGoogle Scholar
  15. Descarries, L., Beaudet, A., and Watkin, K. C. Serotonin nerve terminals in adult rat neocortex. Brain Res. 100:563–588, 1975.PubMedCrossRefGoogle Scholar
  16. Deschodt-Lanckman, M., Bui, N.D., and Christophe, J. Cholecystokinin octa-and tetrapeptide degradation by synaptic membranes. Evidence for competition with enkephalins for common degradation pathways. Neurosci. Lett. [SuppL] 7:S321, 1981.Google Scholar
  17. DiFiglia, M., Aronin, N., and Leeman, S. E. Ultrastructural localization of immunoreactive neurotensin in monkey superficial dorsal horn. J. Comp. Neurol. 225:1–12, 1984.PubMedCrossRefGoogle Scholar
  18. Fielding, S., Wilbur, J., Hyner, M., Szewczak, M., Novick, W. J., Jr. and Harbans, L. A comparison of clonidine with morphine for antinociceptive and withdrawal actions. J. Pharmacol Exp. Ther. 207:899–905, 1978.PubMedGoogle Scholar
  19. Fields, H. L., Wagner, G. M., and Anderson, S. D. Some properties of spinal neurons projecting to the medial brain-stem reticular formation. Exp. Neurol. 47:118–134, 1975.PubMedCrossRefGoogle Scholar
  20. Fields, H. L., Emson, P. C., Leigh, B. K., Gilbert, R. F. T., and Iversen, L. L. Multiple opiate receptor sites on primary afferent fibres. Nature 284:351–353, 1980.PubMedCrossRefGoogle Scholar
  21. Frere, R. C., Mac Donald, R. L., and Young, A. B. Gaba binding and bicuculline in spinal cord and cortical membranes from adult rat and from mouse neurons in cell culture. Brain Res. 244:145–153, 1982.PubMedCrossRefGoogle Scholar
  22. Gamse, R., Hölzer, P., and Lembeck, F. Indirect evidence for presynaptic location of opiate receptors on chemosensitive primary sensory neurones. Naunyn Schmiedebergs Arch. Pharmacol. 308:281–285, 1979.PubMedCrossRefGoogle Scholar
  23. Gibson, S. J., Polak, J. M., Bloom, S. R., and Wall, P. D. The distribution of nine peptides in rat spinal cord with special emphasis on the area around the central canal (lamina X). J. Comp. Neurol. 201:65–79, 1981.PubMedCrossRefGoogle Scholar
  24. Glazer, E. J., and Basbaum, A. I. Opioid neurons and pain modulation: An ultrastructural analysis of enkephalin in cat superficial dorsal horn. Neurosci. 10:357–376, 1983.CrossRefGoogle Scholar
  25. Goodman, R. R., and Snyder, S. H. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J. Neurosci. 2:1230-1241.Google Scholar
  26. Goodman, R. R., Synder, S. H., Kuhar, M. J., and Young, W. S. III. Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proc. Natl. Acad. Sci. U.S.A. 77:6239–6243, 1980.PubMedCrossRefGoogle Scholar
  27. Gouarderes, C., Audigier, Y., and Cros, J. Benzomorphan binding sites in rat lumbo-sacral spinal cord. Eur. J. Pharmacol. 78:483–486, 1982.PubMedCrossRefGoogle Scholar
  28. Harris, D. W., and Sethy, V. H. High affinity binding of [3H]ethylketocyclazocine to rat brain homogenate. Eur. J. Pharmacol. 66:121–123, 1980.PubMedCrossRefGoogle Scholar
  29. Herkenham, M., and Sokoloff, L. Quantification of receptor densities by autoradiography: Tissue defatting minimizes differential absorbance of tritium by gray and white matter. Soc. Neurosci. Abstr. 9:329, 1983.Google Scholar
  30. Hiller, J. M., Simon, E. J., Crain, S. M., and Petersen, E. R. Opiate receptors in cultures of fetal mouse dorsal root ganglia (DRG) and spinal cord: Predominance in DRG neurites. Brain Res. 145:396–400, 1978.PubMedCrossRefGoogle Scholar
  31. Hökfelt, T., Elde, R., Johansson, O., Terenius, L., and Stein, L. The distribution of enkephalin-immunoractive cell bodies in the rat central nervous system. Neurosci Lett. 5:25–31, 1977.PubMedCrossRefGoogle Scholar
  32. Honda, C. N., and Perl, E. R. Properties of neurons in lamina X and the midline dorsal horn of the sacrococcygeal spinal cord of the cat. Soc. Neurosci. Abstr. 7:610, 1981.Google Scholar
  33. Hosli, E., and Hosli, L. Evidence for the existence of alpha-and beta-adrenoceptors on neurones and glial cells of cultured rat central nervous system—an autoradiographic study. Neuroscience 7:2873–2881, 1982.PubMedCrossRefGoogle Scholar
  34. Howe, J., and Yaksh, T. Changes in sensitivity to intrathecal norepinephrine and serotonin after 6-hydroxydopamine (6-Ohda), 5,6-dihyroxytryptamine (5,6-DHT) or repeated monoamine administration. J. Pharmacol. Exp. Ther. 220:311–321, 1982.PubMedGoogle Scholar
  35. Howe, J., and Yaksh, T. Alpha2-adrenoceptor binding and monoamine content in the cat lumbar spinal cord after intrathecal 6-hydroxydopamine on cervical hemisection. Soc. Neurosci. Abstr. 10:489, 1984.Google Scholar
  36. Howe, J. R., Wang J.-Y., and Yaksh, T. L. Selective antagonism of the antinociceptive effect of intrathecally applied α-adrenergic agonists by intrathecal prazosin and intrathecal yohimbine. J. Pharmacol. Exp. Ther. 224:552–558, 1983.PubMedGoogle Scholar
  37. Hunt, S. P., Kelly, J. S., and Emson, P. C. The electron microscopic localization of methionine enkephalin within the superficial layers (I and II) of the spinal cord. Neuroscience 5:1871–1890, 1980.PubMedCrossRefGoogle Scholar
  38. Hylden J. L. K., and Wilcox G. L. Antinociceptive action of intrathecal neurotensin in mice. Peptides 4:517–520, 1983a.PubMedCrossRefGoogle Scholar
  39. Hylden, J. L. K., Wilcox, G. L. Intrathecal serotonin in mice: Analgesia and inhibition of a spinal action of substance P. Life S?. 33:789–795, 1983b.CrossRefGoogle Scholar
  40. Hylden, J. L. K., and Wilcox, G. L. Pharmacological characterization of substance P-induced nociception in mice: Modulation by opioid and noradrenergic agonists at the spinal level. J. Pharmacol. Exp. Ther. 226:398–404, 1983c.PubMedGoogle Scholar
  41. Jan, L. Y., Jan, Y. N., and Brownfield, M. S. Peptidergic transmitters in synaptic boutons of sympathetic ganglia. Nature 288:380–382, 1980.PubMedCrossRefGoogle Scholar
  42. Jessell, T. M., and Iversen, L. L. Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268:549–551, 1977.PubMedCrossRefGoogle Scholar
  43. Jessell, T. M., Iversen, L. L., and Cuello, A. C. Capsaicin-induced depletion of substance P from primary sensory neurones. Brain Res. 152:183–188, 1978.PubMedCrossRefGoogle Scholar
  44. Jessell, T., Tsunoo, A., Kanazawa, I., and Otsuka, M. Substance P: Depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res. 168:247–259, 1979.PubMedCrossRefGoogle Scholar
  45. Jones, D. J., Kendall, D. E., and Enna, S. J. Adrenergic receptors in rat spinal cord. Neuropharmacology 21:191–195, 1982.PubMedCrossRefGoogle Scholar
  46. Jurna, I. and Zetler, G. Antinociceptive effect of centrally administered caerulein and chole-cystokinin octapeptide (CCK-8). Eur. J. Pharmacol. 73:321, 1981.CrossRefGoogle Scholar
  47. Kayaalp, S. O., and Neff, N. H. Regional distribution of cholinergic muscarinic receptors in spinal cord. Brain Res. 196:429–436, 1980.PubMedCrossRefGoogle Scholar
  48. Kimura, H., McGeer, P. L., Peng, J. H., and McGeer, E. G. The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. J. Comp. Neurol. 200:151–201, 1981.PubMedCrossRefGoogle Scholar
  49. Kuhar, M. J. Autoradiographic localization of drug and neurotransmitter receptors in the brain. Trends Neurosa. 4:60–64, 1981.CrossRefGoogle Scholar
  50. LaMotte, C., Pert, C. B., and Snyder, S. H. Opiate receptor binding in primate spinal cord: Distribution and changes after dorsal root section. Brain Res. 112:407–412, 1976.PubMedCrossRefGoogle Scholar
  51. Leyson, J. E., Gommeren, W., and Niemegeers, C.J. E. [3H]Sufentanil, a superior ligand for μ-opiate receptors: Binding properties and regional distribution in rat brain and spinal cord. Eur. J. Pharmacol. 87:209–225, 1983.CrossRefGoogle Scholar
  52. Light A. R., and Perl, E. R. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J. Comp. Neurol. 186:133–150, 1979.PubMedCrossRefGoogle Scholar
  53. Light, A. R., Kavookjian, A. M., and Petrusz, P. The ultrastructure and synaptic connections of serotonin-immunoreactive terminals in spinal laminae I and II. Somatosens. Res. 1:33–50, 1983.PubMedCrossRefGoogle Scholar
  54. Ljungdahl, A., Hökfelt, T., and Nilsson, G. Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3:861–943, 1978.PubMedCrossRefGoogle Scholar
  55. Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W. Endogenous opioid peptides: Multiple agonists and receptors. Nature 267:495–499, 1977.PubMedCrossRefGoogle Scholar
  56. Maurin, Y., Buck, S. H., Wamsley, J. K., Burks, T. F., and Yamamura, H. I. Light microscopic autoradiographic localization of [3H]substance P binding sites in rat thoracic spinal cord. Life Sci. 34:1713–1716, 1984.PubMedCrossRefGoogle Scholar
  57. McLaughlin, B. J., Barber, R., Saito, K., Roberts, E., and Wu, J. Y. Immunohistochemical localization of glutamate decarboxylase in rat spinal cord. J. Comp. Neurol. 164:305–322,1975.PubMedCrossRefGoogle Scholar
  58. Monaghan, D. T., and Coiman, C. W. The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res. 252:91–100, 1982.PubMedCrossRefGoogle Scholar
  59. Morita, K., and Katayama, Y. TWO types of acetylcholine receptors on the soma of primary afferent neurons. Brain Res. 290:348–352, 1984.PubMedCrossRefGoogle Scholar
  60. Mudge, A. W., Leeman, S. E., and Fischbach, G. D. Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc. Natl. Acad. Sci. U.S.A. 76:526–530, 1979.PubMedCrossRefGoogle Scholar
  61. Nagy, J. I., Vincent, S. R., Staines, W. M. A., Fibiger, H. C., Reisine, T. D., and Yamamura, H. I. Neurotoxic action of capsaicin on spinal substance P neurons. Brain Res. 186:435–444, 1980.PubMedCrossRefGoogle Scholar
  62. Nahin, R. L., Madsen, A. M., and Giesler, G. J., Jr. Anatomical and physiological studies of the gray matter surrounding the spinal cord central canal. J. Comp. Neurol. 220:321–335, 1983.PubMedCrossRefGoogle Scholar
  63. Ninkovic, M., Hunt, S. P., and Kelly, J. S. Effect of dorsal rhizotomy on autoradiographic distribution of opiate and neurotensin receptors and neurotensin-like immunoreactivity within the rat spinal cord. Brain Res. 230:111–119, 1981.PubMedCrossRefGoogle Scholar
  64. Ninkovic, M., Hunt, S. P., and Gleave, J. R. W. Localization of opiate and histamine Hi-receptors in the primate sensory ganglia and spinal cord. Brain Res. 241:197–206, 1982.PubMedCrossRefGoogle Scholar
  65. Palacios, J. M., Wamsley, J. K., and Kuhar, M. J. High affinity Gaba receptors-autoradiographic localization. Brain Res. 222:285–307, 1981.PubMedCrossRefGoogle Scholar
  66. Paxinos, G., and Watson, C. The Rat Brain in Stereotaxic Coordinates, Academic Press, Sydney, 1982.Google Scholar
  67. Pearson, J., Brandeis, L., Simon, E., and Hiller, J. Radioautography of binding of tritiated diprenorphine to opiate receptors in the rat. Life Sci. 26:1047–1052, 1980.PubMedCrossRefGoogle Scholar
  68. Peroutka, S. J., Lebovitz, R. M., and Snyder, S. H. Two distinct central serotonin receptors with different physiological functions. Science 212:828–829, 1981.CrossRefGoogle Scholar
  69. Pert, C. B., Kuhar, M. J., and Snyder, S. H. Autoradiographic localization of the opiate receptor in rat brain. Life Sci. 16:1849–1854, 1975.PubMedCrossRefGoogle Scholar
  70. Pert, C. B., Kuhar, M. J., and Snyder, S. H. Opiate receptor: Autoradiographic localization in rat brain. Proc. Natl. Acad. Sci. U.S.A. 73:3729–3733, 1976.PubMedCrossRefGoogle Scholar
  71. Polz-Tejera, G., Hunt, S. P., and Schmidt, J. Nicotinic receptors in sensory ganglia. Brain Res. 195:223–230, 1980.PubMedCrossRefGoogle Scholar
  72. Price, G. W., Wilkin, G. P., Turnbull, M. J., and Bowery, N. G. Are baclofen-sensitive Gaba β receptors present on primary afferent terminals of the spinal cord? Nature 307:71–74, 1984.PubMedCrossRefGoogle Scholar
  73. Ribeiro-Da-Silva, A., and Coimbra, A. Neuronal uptake of [3H]Gaba and [3H]glycine in laminae I-III(substantia gelatinosa Rolandi) of the rat spinal cord. An autoradiographic study. Brain Res. 188:449–464, 1980.PubMedCrossRefGoogle Scholar
  74. Ruda, M. A. Opiates and pain pathways: Demonstration of enkephalin synapses on dorsal projection neurons. Science 215:1523–1525, 1982.PubMedCrossRefGoogle Scholar
  75. Ruda, M. A., and Gobel, S. Ultrastructural characteriation of axonal endings in the substantia gelatinosa which take up [3H]serotonin. Brain Res. 184:57–83, 1980.PubMedCrossRefGoogle Scholar
  76. Sasek, C. A., Seybold, V. S., and Elde, R. P. The immunohistochemical localization of nine peptides in the sacral parasympathetic nucleus and the dorsal gray commissure in rat spinal cord. Neuroscience 12:855–873, 1984.PubMedCrossRefGoogle Scholar
  77. Satoh, K., Kashiba, A., Kimura, H., and Maeda, T. Noradrenergic axon terminals in the substantia gelatinosa of the rat spinal cord. Cell Tissue Res. 222:359–378, 1982.PubMedCrossRefGoogle Scholar
  78. Segu L., and Calas, A. The topographical distribution of serotoninergic terminals in the spinal cord of the cat: Quantitative radioautographic studies. Brain Res. 153:449–464, 1978.PubMedCrossRefGoogle Scholar
  79. Seybold, V., and Elde, R. Receptor autoradiography in thoracic spinal cord: Correlation of neurotransmitter binding sites with sympathoadrenal neurons. J. Neurosci. 10:2533–2542, 1984.Google Scholar
  80. Seybold, V., and Maley, B. Ultrastructural localization of neurotensin-like immunoreactivity in the superficial laminae of the rat dorsal horn. Peptides 5:1179–1189, 1984.PubMedCrossRefGoogle Scholar
  81. Singer E., and Placheta, P. Reduction of [3H]muscimol binding sites in rat dorsal spinal cord after neonatal capsaicin treatment. Brain Res. 202:484–487, 1980.PubMedCrossRefGoogle Scholar
  82. Slater, P., and Patel, S. Autoradiographic localization of opiate kappa receptors in the rat spinal cord. Eur. J. Pharmacol. 92:159–160, 1983.PubMedCrossRefGoogle Scholar
  83. Sparber, S. B., and Meyer, D. R. Clonidine antagonizes naloxone-induced suppression of conditioned behavior and body weight loss in morphine-dependent rats. Pharmacol. Biochem. Behav. 9:319–325, 1978.PubMedCrossRefGoogle Scholar
  84. Steinbusch, H. W. M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals. Neuroscience 6:557–618, 1981.PubMedCrossRefGoogle Scholar
  85. Sumai., K. K., Pickel, V. M., Miller, R. J., and Reis, D. J. Enkephalin-containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructure and synaptic interaction with primary sensory Afferents. Brain Res. 248:223–236, 1982.CrossRefGoogle Scholar
  86. Taylor, J. E., Yaksh, T. L., and Richelson, E. Histamine H1 receptors in the brain and spinal cord of the cat. Brain Res. 243:391–394, 1982.PubMedCrossRefGoogle Scholar
  87. Traynor, J. R., Kelly, P. D., and Range, M. J. Multiple opiate binding sites in rat spinal cord. Life Sci. 31:1377–1380, 1982.PubMedCrossRefGoogle Scholar
  88. Tuschscherer, M. M., and Seybold, V. Immunohistochemical studies of substance P, cholecys-tokinin-betapeptide and somatostatin in dorsal root ganglia of the rat. Neuroscience 14:593–605, 1985.CrossRefGoogle Scholar
  89. Wamsley, J. K., Lewis, M. S., Young, W. S. III, and Kuhar, M.J. Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem. J. Neurosci. 1:176–191, 1981a.PubMedGoogle Scholar
  90. Wamsley, J. K., Zarbin, M. A., and Kuhar, M. J. Muscarinic cholinergic receptors flow in the sciatic nerve. Brain Res. 217:155–161, 1981b.PubMedCrossRefGoogle Scholar
  91. Wamsley, J. K., Zarbin, M. A., Young, W. S. III, and Kuhar, M. J. Distribution of opiate receptors in the monkey brain: An autoradiographic study. Neuroscience 7:595–613, 1982.PubMedCrossRefGoogle Scholar
  92. Westlund, K. N., and Coulter, J. D. Descending projections of the locus coeruleus and sub-coeruleus/medial parabrachial nuclei in monkey: Axonal transport studies and dopamine-B-hydroxylase immunohistochemistry. Brain Res. Rev. 2:235–264, 1980.CrossRefGoogle Scholar
  93. Yaksh, T. L., Jessell, T. M., Gamse, R., Mudge, A. W., and Leeman, S. E. Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature 286:155–157, 1980.PubMedCrossRefGoogle Scholar
  94. Yaksh, T. L., Sghmauss, C., Migevych, P. E., Abay, E. O., and Go, V. L. W. Pharmacological studies on the application, disposition and release of neurotensin in the spinal cord. Ann. N.Y. Acad. Sci. 400:228–247, 1982.PubMedCrossRefGoogle Scholar
  95. Yamamura, H. I., Wamsley, J. K., Deshmukh, P., and Roeske, W. R. Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using [3h]pirenzepine. Eur. J. Pharmacol. 91:147–149, 1983.PubMedCrossRefGoogle Scholar
  96. Young, W. S. III, and Kuhar, M. J. A new method for receptor autoradiography: [3H]Opioid receptors in rat brain. Brain Res. 179:255–270, 1979a.PubMedCrossRefGoogle Scholar
  97. Young, W. S. III, and Kuhar, M.J. Neurotensin receptors: Autoradiographic localization in rat CNS. Eur. J. Pharmacol. 59:161–163, 1979b.PubMedCrossRefGoogle Scholar
  98. Young, W. S. III, and Kuhar, M. J. Noradrenergic alpha-1 and alpha-2 receptors: Autoradiographic visualization. Eur. J. Pharmacol. 59:317–319, 1979c.PubMedCrossRefGoogle Scholar
  99. Young, W. S. III, and Kuhar, M.J. Radiohistochemical localization of benzodiazepine receptors in rat brain. J. Pharmacol. Exp. Ther. 212:337–346, 1980a.PubMedGoogle Scholar
  100. Young, W. S. III, and Kuhar, M. J. Serotonin receptor localization in rat brain by light microscopic autoradiography. Eur. J. Pharmacol. 62:237–239, 1980b.PubMedCrossRefGoogle Scholar
  101. Young, W. S. III, and Kuhar, M. J. Neurotensin receptor localization by light microscopic autoradiography in rat brain. Brain Res. 206:273–285, 1981.PubMedCrossRefGoogle Scholar
  102. Young, W. S. III, Wamsley, J. K., Zarbin, M. A., and Kuhar, M. J. Opioid receptors undergo axonal flow. Science 210:76–77, 1980.PubMedCrossRefGoogle Scholar
  103. Zarbin, M. A., Wamsley, J. K., and Kuhar, M. J. Glycine receptor: Light microscopic autoradiographic localization with [3H]strychnine. J. Neurosci. 1:532–547, 1981.PubMedGoogle Scholar
  104. Zarbin, M. A., Innis, R. B., Wamsley, J. K., Snyder, S. H., and Kuhar, M.J. Autoradiograpahic localization of cholecystokinin receptors in rodent brain. J. Neurosci. 3:877–906, 1983.PubMedGoogle Scholar
  105. Zivin, J. A., Reid, J. L., Saavedra, J. M., and Kopin, I. J. Quantitative localization of biogenic amines in the spinal cord. Brain Res. 99:293–301, 1975.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Virginia S. Seybold
    • 1
  1. 1.Department of AnatomyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations