Organization of Dorsal Horn Neurotransmitter Systems

  • Carole C. LaMotte


The spinal cord dorsal horn is endowed with neural structures rich in a variety of neurotransmitters and neuromodulators, including amino acids, peptides, catecholamines, and serotonin. Many are concentrated in the superficial dorsal horn (laminae I, II, and III), with precise subregional accumulations specific for each substance.


Spinal Cord Dorsal Horn Vasoactive Intestinal Polypeptide Spinal Cord Dorsal Horn Superficial Dorsal Horn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anaud, P., Gibson, S. J., McGgregor, G. P., Blank, M. A., Ghatei, M. A., Bacarese-Hamilton, A. J., Polar, J. M., and Bloom, S. R. A VIP-containing system concentrated in the lumbosacral region of human spinal cord. Nature 305:143–145, 1983.CrossRefGoogle Scholar
  2. Anden, N.E., Jukes, M. G. M., Lundberg, A, and Vyklicky, L. The effect of Dopa on the spinal cord. I. Influence on transmission from primary Afferents. Acta Physiol Scand. 67:373–386, 1966.PubMedCrossRefGoogle Scholar
  3. Aprison, M. H., Shank, R. P., and Davidoff, R. A. Glycine: A transmitter suspect in different areas of the brain and spinal cord in seven different vertebrates. Comp. Biochem. Physiol. 28:1345–1355, 1969.PubMedCrossRefGoogle Scholar
  4. Aronin, N., DiFiglia M., Liotla, A. S., and Martin, J. B. Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn. J. Neurosci. 1:561–577, 1981.PubMedGoogle Scholar
  5. Barber, R. P., Vaughn, J. E., Saito, K., McLaughlin, B. J., and Robert, E. Gabaergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res. 141:35–55, 1978.PubMedCrossRefGoogle Scholar
  6. Barber, R. P., Vaughan, J. E., Slemmon, J. R., Salvaterra, R. M., Roberts, E, and Leeman, S. E. The orgin, distribution and synaptic relationships of substance P axons in rat spinal cord. J. Comp. Neurol. 184:331–352, 1979.PubMedCrossRefGoogle Scholar
  7. Barber, R. P., Vaughn, J. E., and Roberts, E. The cytoarchitecture of Gabaergic neurons in rat spinal cord. Brain Res. 238:305–328, 1982.PubMedCrossRefGoogle Scholar
  8. Basbaum, A. L., and Fields, H. L. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies on the anatomy of pain modulation. J. Comp. Neurol. 187:513–532, 1979.PubMedCrossRefGoogle Scholar
  9. Basbaum, A. I., and Glazer, E. J. Immunoreactive vasoactive intestinal polypeptide is concentrated in the sacral spinal cord: A possible marker for pelvic visceral afferent fibers. Somatosen. Res. 1:69–82, 1983.CrossRefGoogle Scholar
  10. Basbaum, A. I., Clanton, C. H., and Fields, H. L. Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. J. Comp. Neurol. 178:209–224, 1978.PubMedCrossRefGoogle Scholar
  11. Belcher, G., Ryall, R. W., and Schaffner, R. The differential effect of 5-hydroxytryptamine, noradrenaline and raphe stimulation on nociceptive and non-nociceptive dorsal horn inter-neurons in the cat. Brain Res. 151:307–321, 1978.PubMedCrossRefGoogle Scholar
  12. Bennett, G. J., Ruda, M., Gobel, S., and Dubner, S. Enkephalin immunoreactive stalked cells and lamina III islet cell in the cat substantia gelatinose. Brain Res. 240:162–165, 1982.PubMedCrossRefGoogle Scholar
  13. Bjorklund, A., and Skagerberg, G. Evidence for a major spinal cord projection from diencephalic All dopamine cell group in the rat using transmitter-specific fluorescent retrograde tracing. Brain Res. 177:170–175, 1979.PubMedCrossRefGoogle Scholar
  14. Bowker, R.M., Steinbusch, H. W. M., and Coulter, J. D. Serotonin and peptidergic projections to the spinal cord demonstrated by a combined retrograde HRP histochemical staining method. Brain Res. 211:412–417, 1981.PubMedCrossRefGoogle Scholar
  15. Burnweit, C., and Forssmann, W. G. Somatostatinergic nerves in the cervical spinal cord of the monkey. Cell Tissue Res. 200:83–90, 1979.PubMedCrossRefGoogle Scholar
  16. Carstens, E., Klumpp, D., Randic, M., and Zimmerman, M. Effect of iontophoretically applied 5-hydroxytryptamine on the excitability of single primary afferent C-and A-fibers in the cat spinal cord. Brain Res. 220:151–158, 1981.PubMedCrossRefGoogle Scholar
  17. Charnay, Y., Paulin, C., Dray, F., and Dubois, P. Distribution of enkephalin in human fetus and infant spinal cord: An immunofluorescence study. J. Comp. Neurol. 223:415–423, 1984.PubMedCrossRefGoogle Scholar
  18. Clineschmidt, B. V., McGuffin, J. C., and Bunting, P. B. Neurotensin: Antinociceptive action in rodents. Eur. J. Pharmacol. 54:129–139, 1979.PubMedCrossRefGoogle Scholar
  19. Dalsgaard, C. J., Hökfelt, T., Johnsson, O., and Elde, R. Somatostatin immunoreactive cell bodies in the dorsal horn and the parasympathetic intermediolateral nucleus of the rat spinal cord. Neurosci. Lett. 27:335–339, 1981.PubMedCrossRefGoogle Scholar
  20. Dalsgaard, C. J., Vincent, S. R., Hökfelt, T., Lundberg, J. M., Dahlstrom, A., Schultzberg, M. Dolkral, G. J. and Cvello, A. C. Coexistence of cholecystokinin-and substance P-like peptides in neurons of the dorsal root ganglia of the rat. Neurosci. Lett. 33:159–164, 1982.PubMedCrossRefGoogle Scholar
  21. Davidoff, R. A. Handbook of the Spinal Cord, Vol. 1: Pharmacology, Marcel Dekker, New York, 1983.Google Scholar
  22. Davies, J., and Dray, A. Depression and facilitation of synaptic responses in cat dorsal horn by substance P administered into substantia gelatinosa. Life Sci. 27:2037–2042, 1980.PubMedCrossRefGoogle Scholar
  23. Davies, J. E., and Roberts, H. M. T. 5-Hydroxytryptamine reduces substance P responses on dorsal horn interneurons: A possible interaction of neurotransmitters. Brain Res. 217:399–404,1981.PubMedCrossRefGoogle Scholar
  24. de Lanerolle, N. C., and LaMotte, C. C. The human spinal cord: Substance P and methionine-enkephalin immunoreactivity. J. Neurosci. 2:1369–1386, 1982.PubMedGoogle Scholar
  25. de Lanerolle, N. C., and LaMotte, C. C. Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. I. Substance P immunoreactivity. Brain Res. 274:31–9, 1983a.PubMedCrossRefGoogle Scholar
  26. de Lanerolle, N. C., and LaMotte, C. C. Laminar organization of five neuropeptides and serotonin in the monkey dorsal horn. Neurosci.Soc. Abstr. 9:256, 1983b.Google Scholar
  27. DiFiglia, M., Aronin, N., and Leeman, S. E. Light microscopic and ultrastructural localization of immunoreactive substance P in the dorsal horn of monkey spinal cord. Neuroscience 7:1127–1139, 1982.PubMedCrossRefGoogle Scholar
  28. DiFiglia, M., Aronin, M., and Leeman, S. E. Ultrastructural localization of innumoreactive neurotensin in the monkey superficial dorsal horn. J. Comp. Neurol. 225:1–12, 1984.PubMedCrossRefGoogle Scholar
  29. DiTirro, F. J., Ho, R. N., and Martin, G. F. Immunohistochemical localization of substance P, somatostatin, and methionine-enkephalin in the spinal cord and dorsal root ganglia of the North American opossum, Didelphis virginiana. J. Comp. Neurol. 198:351–363, 1981.PubMedCrossRefGoogle Scholar
  30. DiTirro, F. J., Martin, G. F., and Ho, R. H. A developmental study of substance P, somatostatin, enkephalin, and serotonin immunoreactive elements in the spinal cord of the North American opossum. J. Comp. Neurol. 213:241–261, 1983.PubMedCrossRefGoogle Scholar
  31. Duggan, A. W., Hall, J., and Headly, P. Enkephalins and dorsal horn neurones of the cat: Effects on responses to noxious and innocuous skin stimuli. Br. J. Pharmacol. 61:399–408, 1977.PubMedCrossRefGoogle Scholar
  32. Enberg, I., and Ryall, R. W. The inhibitory action of noradrenaline and other monoamines on spinal neurones. J. Physiol. (Lond.) 185:298–322, 1966.Google Scholar
  33. Fields, H. L., Basbaum, A. I., Clanton, C. H., and Anderson, S. D. Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res. 126:441–54, 1977.PubMedCrossRefGoogle Scholar
  34. Fuxe, K. Evidence for the existence of monoamine neurons in the central nervous system. Acta Physiol. Scand. [Suppl.] 247:39–85, 1965.Google Scholar
  35. Gerhart, K. T., Wilcox, T. K., Chung, J. M., and Willis, W. D. Inhibition of nociceptive and non-nociceptive responses of primate spinothalamic cells by stimulation in medial brainstem. J. Neurophysiol. 45:121–136, 1981.PubMedGoogle Scholar
  36. Gibson, S. J., Polak, J. M., Bloom, S. R., and Wall, P. D. The distribution of nine peptides in rat spinal cord with special emphasis on the substantia gelatinosa and on the area around the central canal (lamina X). J. Comp. Neurol. 201:65–79, 1981.PubMedCrossRefGoogle Scholar
  37. Glazer, E. J., and Basbaum, A. I. Immunohistochemical localization of leucine-enkephalin in the spinal cord of the rat: Enkephalin containing marginal neurons and pain modulation. J. Comp. Neurol. 196:377–389, 1981.PubMedCrossRefGoogle Scholar
  38. Glazer, E. J., and Basbaum, A. I. Opioid neurons and pain modulation: An ultrastructural analysis of enkephalin in cat superficial dorsal horn. Neuroscience 10:357–376, 1983.PubMedCrossRefGoogle Scholar
  39. Gobel, S. Golgi studies of the neurons in layer I of the dorsal horn of the medulla (trigeminal nucleu caudalis). J. Comp. Neurol. 180:375–394, 1978a.PubMedCrossRefGoogle Scholar
  40. Gobel, S. Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J. Comp. Neurol. 180:395–414, 1978b.PubMedCrossRefGoogle Scholar
  41. Gobel, S., Falls, W. M., and Humphrey, E. Morphology and synaptic connections of ultrafine primary axons in lamina I of the spinal dorsal horn: Candidates for the terminal arbors of primary neurons with unmyelinated (C) axons. J. Neurosci. 1:1163–1179, 1981.PubMedGoogle Scholar
  42. Hancock, M. B. Cells of origin of hypothalamo-spinal projection in the rat. Neurosci. Lett. 3:179–184, 1976.PubMedCrossRefGoogle Scholar
  43. Hayes, A. G., and Tyers, M. B. Effects of capsaicin on nociceptive heat, pressure, and chemical thresholds and on substance P levels in the rat. Brain Res. 189:561–564, 1980.PubMedCrossRefGoogle Scholar
  44. Henry, J. L. Effects of substance P on functionally identified units in cat spinal cord. Brain Res. 114:439–451, 1976.PubMedCrossRefGoogle Scholar
  45. Henry, J. L. Electrophysiological studies on the neuroactive properties of neurotensin. Ann. N.Y. Acad. Sci. 400:216–217, 1982.PubMedCrossRefGoogle Scholar
  46. Hoffert, M. J., Miletic., V., Ruda, M. A. and Dubner, R. Immunocytochemical identification of serotonin axonal contacts on characterized neurons in laminae I and II of the cat dorsal horn. Brain Res. 267:361–364, 1983.PubMedCrossRefGoogle Scholar
  47. Hökfelt, T., Elde, R., Johansson, O. Luft, and Arimura A. Immunohistochemical evidence for the presence of somatostatin, a powerful inhibitory peptide, in some primary sensory neurons. Neurosci. Lett. 1:231–235, 1975a.CrossRefGoogle Scholar
  48. Hökfelt, T., Kellereth, J. O., Nilsson, G., and Pernow, B. Experimental immunohistochemical studies on the localization and distribution of substance P in the cat primary sensory neurons. Brain Res. 100:235–252, 1975b.PubMedCrossRefGoogle Scholar
  49. Hökfelt, T., Terentus, L., Kuypers, H. G. J. M., and Dann, O. Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord. Neurosci. Lett. 14:55–60, 1979.PubMedCrossRefGoogle Scholar
  50. Honda, C. N., Rethelyi, M., and Petrusz, P. Preferential immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in the sacral spinal cord of the cat: Light and electron microscopic observations. J. Neurosci. 3:2183–2196, 1983.PubMedGoogle Scholar
  51. Hunt, S. P., Kelly, J. S., Emson, P. C., Kimmel, J. R., Miller, R. J., and Wu, Y. An immuno-histochemical study of neuronal populations containing neuropeptides or γ-aminobutyrate within the superficial layers of the rat dorsal horn. Neuroscience 6:1883–1898, 1981.PubMedCrossRefGoogle Scholar
  52. Jansco, G., Hökfelt, T., Lundberg, J. M., Kiraly, E., Halasz, N., Nilsson, G., Terenius, L., Rehfeld, J., Steinbusch, H., Verehofstad, A., Elde, R., Said, S., and Brown, M. Immunohistochemical studies on the effect of capsaicin on spinal and medullary peptide and monoamine neurons using antisera to substance P, gastrin/CCK, somatostatin, VIP, enkephalin, neurotensin, and 5-hydroxytryptamine. J. Neurocytol. 10:963–980, 1981.CrossRefGoogle Scholar
  53. Jeftinija, S., Miletic, V., and Randic, M. Cholecystokinin octapeptide excites dorsal horn neurons both in vivo and in vitro. Brain Res. 213:231–236, 1981.PubMedCrossRefGoogle Scholar
  54. Jeftinija, S., Murase, K., Nedeljkov, V., and Randic, M. Vasoactive intestinal polypeptide excites mammalian dorsal horn neurons both in vivo and in vitro. Brain Res. 243:158–164, 1982.PubMedCrossRefGoogle Scholar
  55. Jessell, T. M., and Iversen, L. L. Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268:549–551, 1977.PubMedCrossRefGoogle Scholar
  56. Jordan, L. M., Kenshalo, D. R., Jr., Martin, R. F., Haber, L. A., and Willis, W. D. TWO populations of spinothalamic tract neurons with opposite responses to 5-hydroxytryptamine. Brain Res. 164:343–346, 1979.CrossRefGoogle Scholar
  57. Knyihar-Csillik, E., Csillik, B., and Rakic, P. Ultrastructure of normal and degenerating glomerular terminals of dorsal root axons in the substantia gelatinosa of the rhesus monkey. J. Comp. Neurol. 210:357–375, 1982.PubMedCrossRefGoogle Scholar
  58. LaMotte, C. C. Distribution of the tract of Lissauer and dorsal root fibers in the primate spinal cord. J. Comp. Neurol. 172:529–561, 1977.PubMedCrossRefGoogle Scholar
  59. LaMotte, C. C., and de Lanerolle, N. C. Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. II. Met-enkephalin immunoreactivity. Brain Res. 274:51–63, 1983a.PubMedCrossRefGoogle Scholar
  60. LaMotte, C. C., and de Lanerolle, N. C. Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. III. Serotonin immunoreactivity. Brain Res. 274:65–77, 1983b.PubMedCrossRefGoogle Scholar
  61. LaMotte, C. C., and de Lanerolle, N. C. Vasoactive intestinal polypeptide (VIP): Distribution throughout the length of primate spinal cord. Neurosci. Soc. Abstr. 9:256, 1983c.Google Scholar
  62. LaMotte, C. C., Pert, C. B., and Snyder, S. H. Opiate receptor binding in primate spinal cord: Distribution and changes after dorsal root section. Brain Res. 112:407–412, 1976.PubMedCrossRefGoogle Scholar
  63. LaMotte, C. C., Johns, D. R., and de Lanerolle, N. C. Immunohistochemical evidence of indolamine neurons in monkey spinal cord. J. Comp. Neurol. 206:359–370, 1982.PubMedCrossRefGoogle Scholar
  64. Light, A. R., and Perl, E. R. Spinal termination of functionaly identified primary afferent neurons with slowly conducting myelinated fibers. J. Comp. Neurol. 186:133–150, 1979.PubMedCrossRefGoogle Scholar
  65. Light, A. R., Kavookjian, A. M., and Petrusz, P. The ultrastructure and synaptic connections of serotonin-immunoreactive terminals in spinal laminae I and II. Somatosens. Res. 1:33–50, 1983.PubMedCrossRefGoogle Scholar
  66. Lundberg, J. M., Hökfelt, T., Nilsson, G., Terenius, L., Rehfeld, J., Elde, R., and Said, S. Peptide neurons in the vagus, splanchnic and sciatic nerves. Acta Physiol. Scand. 104:499–501, 1978.PubMedCrossRefGoogle Scholar
  67. MacDonald, R. L., and Nowak, L. M. Substance P and somatostatin actions on spinal cord neurons in primary dissociated cell culture. Adv. Biochem Psychopharmacol. 28:159–173, 1981.PubMedGoogle Scholar
  68. MacIewicz, R., Phipps, B. S., Grenier, J., and Poletti, C. E. Edinger-Westphal nucleus: Cholecystokinin immunohistochemistry and projections to the spinal cord and trigeminal nucleus in the cat. Brain Res. 299:139–145, 1984.PubMedCrossRefGoogle Scholar
  69. Martin, R. F., Haber, L. H., and Willis, W. D. Primary afferent depolarization of identified cutaneous fibers following stimulation in medial brainstem. J. Neurophysiol. 42: 779–790, 1979.PubMedGoogle Scholar
  70. McLaughlin, B. J., Barber, R., Saito, K., Roberts, E., and Wu, J. Y. Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J. Comp. Neurol. 164:305–322, 1975.PubMedCrossRefGoogle Scholar
  71. Messing, R. B., and Lytle, L. D. Serotonin containing neurons: Their possible role in pain and analgesia. Pain 4:1–21, 1977.PubMedCrossRefGoogle Scholar
  72. Miletic, V., and Randic, M. Neurotensin excites cat spinal neurons located in laminae I-III. Brain Res. 169:600–604, 1979.PubMedCrossRefGoogle Scholar
  73. Nagy, J. I., Hunt, S. P., Iversen, L. L., and Emson, P. C. Biochemical and anatomical observations on the degenertion of peptide-containing primary afferent neurons after neonatal capsaicin. Neuroscience 6:1923–1934, 1981.PubMedCrossRefGoogle Scholar
  74. Ninkovic, M. C., Hunt, S. P., and Kelly, J. S. Effect of dorsal rhizotomy on the autoradiographic distribution of opiate and neurotensin receptors and neurotensin-like immunoreactivity within the rat spinal cord. Brain Res. 230:111–119, 1981.PubMedCrossRefGoogle Scholar
  75. Nygren, L. G., and Olson, L. A new major projection from locus coeruleus: The main source of noradrenergic nerve terminals in the ventral and dorsal columns of the spinal cord. Brain Res. 132:85–93, 1977.PubMedCrossRefGoogle Scholar
  76. Olgart, L., Hökfelt, T., Nilsson, G., and Pernow, B. Localization of substance P-like immunoreactivity in nerves in the tooth-pulp. Pain 4:153–160, 1977.PubMedCrossRefGoogle Scholar
  77. Pittman, Q. J., Riphagen, C. L., and Leperis, K. Release of immunoassayable neurohypophyseal peptides from the rat spinal cord, in vivo. Brain Res. 300:321–326, 1984.PubMedCrossRefGoogle Scholar
  78. Ralston, H. J., and Ralston, D. D. The distribution of dorsal root axons in laminae I, II and III of the macaque spinal cord: A quantitative electron microscopic study. J. Comp. Neurol. 184:643–684, 1979.PubMedCrossRefGoogle Scholar
  79. Randic, M. and Miletic, V. Effect on substance P in cat dorsal horn neurons activated by noxious stimuli. Brain Res. 128:164–169, 1977.PubMedCrossRefGoogle Scholar
  80. Randic, M., and Miletic, V. Depressant actions of met-enkephalin and somatostatin in cat dorsal horn neurons activated by noxious stimuli. Brain Res. 152:196–202, 1978.PubMedCrossRefGoogle Scholar
  81. Randic, M., and Yu, H. H. Effects of 5-hydroxytryptamine and bradykinin in cat dorsal horn neurones activated by noxious stimuli. Brain Res. 111:197–203, 1976.PubMedCrossRefGoogle Scholar
  82. Rethelyi, M., Light, A. R., and Perl, E. R. Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers. J. Comp. Neurol. 207:381–393, 1982.PubMedCrossRefGoogle Scholar
  83. Ritchie, T. C., Roos, L. J., Williams, B. J., and Leonard, R. B. The descending and intrinsic serotonergic innervation of an elasmobranch spinal cord. J. Comp. Neurol. 224:395–406, 1984.PubMedCrossRefGoogle Scholar
  84. Ruda, M. A. Opiates and pain pathways: Demonstration of enkephalin synapses on dorsal horn projection neurons. Science 215:1523–1524, 1982.PubMedCrossRefGoogle Scholar
  85. Ruda, M. A., Coffield, J., and Steinbusch, H. W. M. Immunocytochemical analysis of serotonergic axons in laminae I and II of the lumbar spinal cord of the cat. J. Neurosci. 2:1660–1671. 1982.PubMedGoogle Scholar
  86. Salt, T. E., and Hill, R. G. Neurotransmitter candidates of somatosensory primary afferent fibres. Neuroscience 10:1083–1103, 1983.PubMedCrossRefGoogle Scholar
  87. Satoh, K., Kashiba, A., Kimura, H., and Maeda, T. Noradrenergic axon terminals in the substantia gelatinosa of the rat spinal cord. Cell Tissue Res. 222:359–378, 1982.PubMedCrossRefGoogle Scholar
  88. Schrøder, H. D. Localization of cholecystokinin-like immunoreactivity in the rat spinal cord, with particular reference to the autonomic innervation of the pelvic organs. J. Comp. Neurol. 217:176–186, 1983.PubMedCrossRefGoogle Scholar
  89. Schrøder, H. D. Somatostatin in the caudal spinal cord: An immunohistochemical study of the spinal centers involved in the innervation of pelvic organs. J. Comp. Neurol. 223:400–414, 1984.PubMedCrossRefGoogle Scholar
  90. Seybold, V. S., and Elde, R. P. Neurotensin immunoreactivity in the superficial laminae of the dorsal horn of the rat: I. Light microscopic studies of cell bodies and proximal dendrites. J. Comp. Neurol. 204:89–100, 1982.CrossRefGoogle Scholar
  91. Sumal, K. K., Pickel, V. M., Miller, R. J., and Reis, D. J. Enkephalin-containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructure and synaptic interaction with primary sensory Afferents. Brain Res. 248:223–236, 1982.PubMedCrossRefGoogle Scholar
  92. Swanson, L. W., and McKellar, S. The distribution of oxytocin and neurophysin stained fibers in the spinal cord of the rat and monkey. J. Comp. Neurol. 188:87–106, 1979.PubMedCrossRefGoogle Scholar
  93. Woolf, C. J., and Fitzgerald, M. Do opioid peptides mediate a presynaptic control of C-fiber transmission in the rat spinal cord? Neurosci. Lett. 29:67–72, 1982.PubMedCrossRefGoogle Scholar
  94. Yaksh, T. L. Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal nociceptive effects of morphine in the periaqueductal gray. Brain Res. 160:180–185, 1979.PubMedCrossRefGoogle Scholar
  95. Yaksh, T. L., Farb, D. H., Leeman, S. E., and Jessell, T. M. Intrathecal capsaicin depletes substance P in the rat spinal cord and produces prolonged thermal analgesi. Science 206:481–483, 1979.PubMedCrossRefGoogle Scholar
  96. Yaksh, T. L., Jessell, T. M., Gamse, R., Mudge, A. W., and Leeman S. E. Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature 286:155–157, 1980.PubMedCrossRefGoogle Scholar
  97. Yaksh, T. L., Abay, E. O., and Go, V. L. W. Studies on the location and release of cholecystokinin and vasoactive intestinal polypeptide in rat and cat spinal cord. Brain Res. 242:272–290, 1982a.CrossRefGoogle Scholar
  98. Yaksh, T. L., Schmauss, C., Micevych, P. E., Anay, E. O., and Go, V. L. W. Pharmacological studies on the application, disposition and release of neurotensin in the spinal cord. Ann. N.Y. Acad. Sci. 400:228–243, 1982b.PubMedCrossRefGoogle Scholar
  99. Zieglgansberger, W., and Tulloch, I. F. The effects of methionine-and leucine-enkephalin on spinal neurons of the cat. Brain Res. 167:53–64, 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Carole C. LaMotte
    • 1
  1. 1.Sections of Neurosurgery and AnesthesiologyYale University School of MedicineNew HavenUSA

Personalised recommendations