Advertisement

The Effects of Intrathecally Administered Opioid and Adrenergic Agents on Spinal Function

  • Tony L. Yaksh

Abstract

From the preceding chapters of this book, it is clear that the basic experimental work carried out during the past 10–15 years has led to a remarkable growth in our appreciation of the anatomic and biochemical complexity of the afferent systems through which sensory information in general and that associated with pain in particular is processed.

Keywords

Spinal Cord Dorsal Horn Antinociceptive Effect Opiate Receptor Dorsal Horn Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anden, N.-E., Engel, J., and Rubenson, A. Mode of action of l-Dopa on central noradrenaline mechanisms. Naunyn Schmiedebergs Arch. Pharmakol. 273:1–10, 1972.CrossRefGoogle Scholar
  2. Anden, N.-E., Jukes, M. G. M., and Lundberg, A. Spinal reflexes and monoamine liberation. Nature 202:1222–1223, 1964.PubMedCrossRefGoogle Scholar
  3. Anden, N.-E., Jukes, M. G. M., and Lundberg, A. The effect of Dopa on the spinal cord. 2. A pharmacological analysis. Acta Physiol. Scand. 67:387–397, 1966.PubMedCrossRefGoogle Scholar
  4. Anderson, I., Thompson, W. R., Varkey, G. P. and Knill, R. L. Lumbar epidural morphine as an effective analgesic following cholecystectomy. Can. Anesth. Soc.J. 28:523–529, 1981.CrossRefGoogle Scholar
  5. Aoki, M., Watanabe, H., Namiki, A., Takahasi, T., Yokoyama, E., and Huruya, S. Mechanism of urinary retention following intrathecal administration of morphine. Masui 31:939–943, 1982.PubMedGoogle Scholar
  6. Astrachan, D. I., Davis, M., and Gallager, D. W. Behavior and binding: Correlations between α1-adrenergic stimulation of acoustic startle and α1-adrenoceptor occupancy and number in rat lumbar spinal cord. Brain Res. 260:81–90, 1983.PubMedCrossRefGoogle Scholar
  7. Atchison, S. R., Yaksh, T. L. and Durant, P. Cardiovascular and respiratory effects of intrathecal Dadl in awake dogs. Anesthesiology 61:A219, 1984.CrossRefGoogle Scholar
  8. Attali, B., Gouarderes, C., Mazarguil, H., Audigier, Y., and Cros, J. Differential interaction of opiates to multiple “kappa” binding sites in the guinea-pig lumbosacral spinal cord. Life Sa. 31:1371–1375, 1982.CrossRefGoogle Scholar
  9. Baxter, A. D., and Kiruluta, G. Detrusor tone after epidural morphine. Anesth. Analg. 63:464, 1984.PubMedCrossRefGoogle Scholar
  10. Belcher, G., Ryall, R. W., and Schaffner, R. The differential effects of 5-hydroxytryptamine, noradrenaline and raphe stimulation on nociceptive and non-nociceptive dorsal horn inter-neurones in the cat. Brain Res. 151:307–321, 1978.PubMedCrossRefGoogle Scholar
  11. Bell, J. A., and Matsumiya, T. Inhibitory effects of dorsal horn and excitant effects of ventral horn intraspinal microinjections of norepinephrine and serotonin in the cat. Life Sci. 29:1507–1514, 1981.PubMedCrossRefGoogle Scholar
  12. Bolam, J. M., Robinson, C. J., and Wurster, R. D. Micturition in conscious dogs following spinal opiate administration. Soc. Neurosci. Abstr. 10:1108, 1984.Google Scholar
  13. Bormann, B., Weidler, B., Dernhardt, R. Strum, G. Scheld, H. H. and Hempelmann, G. Influence of epidural fentanyl on stress-induced elevation of plasma vasopressin (ADH) after surgery. Anesth. Analg. 62:727–732, 1983.PubMedCrossRefGoogle Scholar
  14. Brent, C. R., Harty, G., and Yaksh, T. L. The effects of spinal opiates on micturition in unanesthetized animals. Soc. Neurosci. Abstr. 9:743, 1983.Google Scholar
  15. Bromage, P. R., Camporesi, E., and Leslie, J. Epidural narcotics in volunteers: Sensitivity to pain and carbon dioxide. Pain 9:145–160, 1980.PubMedCrossRefGoogle Scholar
  16. Cahill, J., Murphy, D., O’brien, D., Mulhrall, J., and Fitzpatrick, G. Epidural buprenorphine for pain relief after major abdominal surgery: A controlled comparison with epidural morphine. Anaesthesia 38:760–764, 1983.PubMedCrossRefGoogle Scholar
  17. Calvillo, O., Henry, J. L., and Neuman, R. S. Actions of narcotic analgesics and antagonists on spinal units responding to natural stimulation in the cat. Can. J. Physiol. Pharmacol. 51:652–663, 1979.CrossRefGoogle Scholar
  18. Carstens, E., Tulloch, I., Zieglgansberger, W., and Zimmerman, M. Presynaptic excitability changes induced by morphine in single cutaneous afferent C-and A-fibers. Pflugers Arch. 379:143–147, 1979.PubMedCrossRefGoogle Scholar
  19. Chauvin, M., Salbaing, J., Perrin, D., Levon, J. C., and Viars, P. Comparison between intramuscular and epidural administration of alfentanil for pain relief and plasma kinetics. Anesthesiology 59:A197, 1983.Google Scholar
  20. Coombs, D. Mechanism of epidural lidocaine reversal of tachyphylaxis to epidural morphine analgesia. Anesthesiology 59:486–487, 1983.PubMedCrossRefGoogle Scholar
  21. Coombs, D. W., Saunders, R. L., Gaylor, M. S., Block, A. R., Colton, T., Harbaugh, R., Pageau, M. G., and Mroz, W. Relief of continuous chronic pain by intraspinal narcotics infusion via an implanted reservoir. Jama 250:2336–2339, 1983.PubMedCrossRefGoogle Scholar
  22. Cowen, M. J. Bullingham, R. E. S., Paterson, G. M. C. Mc Quay, H. J., and Turner, M. Anesth. Analg. 61:15–18, 1982.PubMedCrossRefGoogle Scholar
  23. Curtis, D. R., and Duggan, A. W. The depression of spinal inhibition by morphine. Agents Actions 1:14–19, 1969.PubMedCrossRefGoogle Scholar
  24. Czlonkowski, A., Costa, T., Przewlocki, R., Pasi, A., and Herz, A. Opiate receptor binding sites in human spinal cord. Brain Res. 267:392–396, 1983.PubMedCrossRefGoogle Scholar
  25. Davies, J., and Dray, A. Pharmacological and electrophysiological studies of morphine and enkephalin on rat supraspinal neurones and cat spinal neurones. Br.J. Pharmacol. 63:87–96, 1978.PubMedCrossRefGoogle Scholar
  26. Davis, M., and Astrachan, D. I. Spinal modulation of acoustic startle: Opposite effects of clonidine and D-amphetamine. Psychopharmacology 75:219–225, 1981.PubMedCrossRefGoogle Scholar
  27. de Groat, W. C., Kawatani, M. Hisamitsu, T., Lowe, I., Morgan, C. Roppolo, J., Booth, A. M., Nadelhaff, I., Kud, D. and Thor, K. The role of neuropeptides in the sacral autonomic reflex pathways of the cat. J. Autonom. Nerv. Syst. 7:339–350, 1983.CrossRefGoogle Scholar
  28. Delander, G.E., and Takemori, A.E. Spinal antagonism of tolerance and dependence induced by systemically administered morphine. Eur.J. Pharmocol. 94:35–42, 1983.CrossRefGoogle Scholar
  29. Duggan, A. W., Johnson, S. M., and Morton, C. R. Differing distributions of receptors for morphine and Met5-enkephalinamide in the dorsal horn of the cat. Brain Res. 229:379–387, 1981.PubMedCrossRefGoogle Scholar
  30. Dunlap, K., and Fischbach, G. D. Neurotransmitter modulation of Voltage-sensitive calcium currents in sensory neurons. Neurosci. Abstr. 5:291, 1979.Google Scholar
  31. Einspahr, F. J., and Piercey, M. F. Morphine depresses dorsal horn neuron responses to controlled noxious and non-noxious cutaneous stimulation. J. Pharmacol. Exp. Ther. 213:456–461, 1980.PubMedGoogle Scholar
  32. Elbaz, N., and Goldin, M. D. Continuous epidural morphine infusion for pain relief after open heart surgery. Anesthesiology 59:A193, 1983.Google Scholar
  33. Engberg, I., and Ryall, R. W. The inhibitory action of noradrenaline and other monoamines of spinal neurones. J. Physiol. Lond. 185:298–322, 1966.PubMedGoogle Scholar
  34. Fields, H. L., Emson, P. C., Leigh, B. K., Gilbert, R. F. T., and Iversen, L. L. Multiple opiate receptor sites on primary afferent fibres. Nature 284:351–353, 1980.PubMedCrossRefGoogle Scholar
  35. Fleetwood-Walker, S. M., Hope, P. J., Mitchell, R., and Molony, V. Investigation of interactions between descending and noradrenaline-mediated and local Gaba-and glycine-mediated influences on spinocervical tract neurons of the cat. J. Physiol. Lond. 346:498, 1983.Google Scholar
  36. Fleetwood-Walker, S. M., Mitchell, R., Hope, P. J. Molony, V., and Iggo, A. An α2 receptor mediates the selective inhibition by noradrenaline of nociceptive responses of identified dorsal horn neurons. Brain Res. 334:243–254, 1985.PubMedCrossRefGoogle Scholar
  37. Gamse, R., Holzer, P., and Lembeck, F. Indirect evidence for presynaptic location of opiate receptors in chemosensitive primary sensory neurones. Naunyn Schmiedbergs Arch. Pharmacol. 308:281–285, 1979.CrossRefGoogle Scholar
  38. Gouarderes, C., Audigier, Y., and Cros, J. Benzomorphan binding sites in rat lumbo-sacral spinal cord. Eur. J. Pharmacol. 78:483–486, 1982.PubMedCrossRefGoogle Scholar
  39. Gustafsson, L. L., Friberg-Nielsen, S., Garle, M., Mohall, A., Rane, A. Schildt, B., and Symreng, T. Extradural and parenteral morphine kinetics and effects in postoperative pain. A controlled clinical study. Br. J. Anesth. 54:1167–1174, 1982.CrossRefGoogle Scholar
  40. Headley, P. M., Duggan, A. W., and Griersmith, B. T. Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Res. 145:185–189, 1978.PubMedCrossRefGoogle Scholar
  41. Herman, B., and Goldstein, A. Antinociception and paralysis induced by intrathecal dynorphin A. J. Pharmacol. Exp. Ther. 232:27–32, 1985.PubMedGoogle Scholar
  42. Howe, J. R., Wang, J.-Y., and Yaksh, T. L. Selective antagonism of the antinociceptive effect of intrathecally applied alpha adrenergic agonists by intrathecal prazosin and intrathecal yohimbine. J. Pharmacol. Exp. Ther. 224:552–558, 1983.PubMedGoogle Scholar
  43. Hylden, J. L. K., and Wilcox, G. L. Antinociceptive action of intrathecal neurotensin in mice. Peptides 4:517–520, 1983.PubMedCrossRefGoogle Scholar
  44. Hylden, J. L. K., and Wilcox, G. L. Pharmacological characterization of substance P-induced nociception in mice: Modulation by opioid and noradrenergic agonists at the spinal level. J. Pharmacol. Exp. Ther. 226:398–404, 1983.PubMedGoogle Scholar
  45. Iwata, N., and Sakai, Y. Effects of fentanyl upon the spinal interneurons activated by Ad afferent fibers of the cutaneous nerve of the cat. Jpn. J. Pharmacol. 21:413–426, 1971.PubMedCrossRefGoogle Scholar
  46. Jeftinija, S., Semba, K., and Randic, M. Norepinephrine reduces excitability of single cutaneous primary afferent C-fibers in the cat spinal cord. Brain Res. 219:456–463, 1981.PubMedCrossRefGoogle Scholar
  47. Jordan, L. M., MmCrea, D. A., Steeves, J. D., and Menzies, J. E. Noradrenergic synapses and effects of noradrenaline on interneurons in the ventral horn of the cat spinal cord. Can. J. Physiol. Pharmacol. 55:399–412, 1977.PubMedCrossRefGoogle Scholar
  48. Jurna, I. Inhibition of the effect of repetitive stimulation on spinal motoneurones of the cat by morphine and pethidine. Int. J. Neuropharmacol. 5:117–123, 1966.PubMedCrossRefGoogle Scholar
  49. Jurna, I., and Grossmann, W. The effect of the activity evoked in ventrolateral tract axons of the cat spinal cord. Exp. Brain Res. 24:473–484, 1976.PubMedCrossRefGoogle Scholar
  50. Jurna, I., and Heinz, G. Differential effects of morphine and opioid analgesics on A and C fiber-evoked activity in ascending axons of the rat spinal cord. Brain Res. 171:573–576, 1979.PubMedCrossRefGoogle Scholar
  51. Jurna, I., and Schaeer, H. Depression of post tetanic potentiation in the spinal cord by morphine and pethidine. Expenentia 21:226–227, 1965.CrossRefGoogle Scholar
  52. Jurna, I., Heinz, G. Blinn, G., and Nell, T. The effect of substantia nigra stimulation and morphine on α-motoneurones and the tail flick response. Eur. J. Pharmacol. 51:239–250, 1978.PubMedCrossRefGoogle Scholar
  53. Kalsa, P., Madan, R., Sabsena, R., Batra, R., and Gode, G. Epidural pentazocine for postoperative pain relief. Anesth. Analg. 52:949–950, 1983.Google Scholar
  54. Kaneiko, T., Nakazawa, T., Ikeda, M., Yamatsu, K., Iwama, T. Wada, T., Satoh, M., and Takagi, H. Sites of analgesic action of dynorphin. Life Sci. 33:661–664, 1983.CrossRefGoogle Scholar
  55. Kawasaki, K., Takesue, H., and Matsushita, A. Modulation of spinal reflex activities in acute spinal rats with α-adrenergic agonists and antagonists. Jpn. J. Pharmacol. 28:165–168, 1978.PubMedCrossRefGoogle Scholar
  56. Kerr, F. W. L. Pain: A central inhibitory balance theory. Mayo Clin. Proc. 50:685–690, 1975.PubMedGoogle Scholar
  57. Kerr, F. W. L. Segmentai circuitry and spinal cord nociceptive mechanisms. Adv. Pain Res. Ther. 1:75–89, 1976.Google Scholar
  58. Kotelko, D. M., Dailey, P. A., Shnider, S. M., Rosen, M. A., Hughes, S. C., and Brizgys, R. V. Epidural morphine analgesia after caesarean delivery. Obstet. Gynecol. 63:409–413, 1984.PubMedGoogle Scholar
  59. Krivoy, W., Kroeger J, D., and Zimmermann, E. Actions of morphine on the segmental reflex of the decerebrate spinal cat. Br. J. Pharmacol. 47:457–464, 1973.PubMedCrossRefGoogle Scholar
  60. Kruglov, N. A. Effect of morphine group analgesics on the central inhibitory mechanisms. Int. J. Neuropharmacol. 3:197–203, 1964.PubMedCrossRefGoogle Scholar
  61. Krumins, S. A., Costa, T., Shimohigashi, Y., Munson, P. J., and Rodbard, D. Differential effects of GTP and cations on binding of labeled dimeric and monomeric enkephalins to neuroblastoma—glioma cell delta opiate receptors. Biochem. Biophys. Res. Commun. 108:406–413, 1982.PubMedCrossRefGoogle Scholar
  62. Kuraishi, Y., Harada, Y., and Takagi, H. Noradrenaline regulation of pain-transmission in the spinal cord mediated by: ga-adrenoceptors. Brain Res. 174:333–336, 1979.PubMedCrossRefGoogle Scholar
  63. Kuraishi, Y., Saton, M., Harada, Y., Akaike, A., and Shibata, T. Analgesic action of intraspinal and intracerebral β-endorphin in rats: Comparison with morphine. Eur. J. Pharmacol. 67:143–146, 1980.PubMedCrossRefGoogle Scholar
  64. Kuschinsky, K., Seeber, U., Langer, J., and Sontag, K. H. Effects of opiates and of neuroleptics on alpha-motoneurones in rat spinal cord: Possible correlations with muscular rigidity and akinesia, in: Characteristics and Function of Opioids (J. M. van Ree and L. Terenius, eds.), Elsevier-North Holland, Amsterdam, 1978, pp. 431–435.Google Scholar
  65. LaMotte, C., Pert, C. B., and Snyder, S. H. Opiate receptor binding in primate spinal cord: Distribution and changes after dorsal root section. Brain Res. 112:407–412, 1976.PubMedCrossRefGoogle Scholar
  66. Larson, A. A., Vaught, J. L., and Takemori, A. E. The potentiation of spinal analgesia by leucine enkephalin. Eur. J. Pharmacol. 61:381–383. 1980.PubMedCrossRefGoogle Scholar
  67. Le Bars, D., Menetrey, D., Conseiller, C., and Besson, J. M. Depressive effects of morphine upon lamina V cell activities in the dorsal horn of the spinal cat. Brain Res. 93:261–277, 1975.CrossRefGoogle Scholar
  68. Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W. Endogenous opioid peptides: Multiple agonists and receptors. Nature 267:495–499, 1977.PubMedCrossRefGoogle Scholar
  69. MacDonald, R. L., and Nelson, P. G. Specific opiate-induced depression of transmitter release from dorsal root ganglion cells in culture. Sciences 199:1449–1451, 1978.CrossRefGoogle Scholar
  70. Malins, A. F., Goodman, N. W., Cooper, G. M., Prys-Roberts, C., and Baird, R. N. Ventilatory effects of pre and postoperative diamorphine. A comparison of extradural with intramuscular administration. Anaesthesia 39:118–125, 1984.PubMedCrossRefGoogle Scholar
  71. Martin, G. E., and Naruse, T. Differences in the pharmacological actions of intrathecally administered neurotensin and morphine. Regul. Peptides 3:97–103, 1982.CrossRefGoogle Scholar
  72. Martin, R., Salbaing, J., Blaise, G., Tetraultj, J. P., and Tetreault, L. Epidural morphine for postoperative pain relief: A dose response curve. Anesthesiology 56:423–426, 1982.PubMedCrossRefGoogle Scholar
  73. Martin, W. R. Pharmacology of opioids. Pharmacol Rev. 35:283–323, 1983.PubMedGoogle Scholar
  74. McCall, R. B., and Aghajanian, G. K. Serotonergic facilitation of facial motoneuron excitation. Brain Res. 169:11–27, 1979.PubMedCrossRefGoogle Scholar
  75. Melzack, R., and Wall, P. D. Pain mechanisms: A new theory. Science 150:971–979, 1965.PubMedCrossRefGoogle Scholar
  76. Mori, T. Studies on comparison of the postoperative analgesic method between epidural morphine HCl and pentazocine. Acta. Obstet. Gynaecol. Jpn. 34:1819–1826, 1982.Google Scholar
  77. Moulin, D., Max, M., Kaiko, R., Inturrisi, G., Maggard, J., Yaksh, T. L. and Foley, K. Analgesic efficacy of IT d-Ala2 d-Leu5-enkephalin (DADL) in cancer patients with chronic pain. Pain (in press), 1985.Google Scholar
  78. Mudge, A. W., Leeman, S. E., and Fischbach, G. D. Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc. Natl. Acad. Sci. U.S.A. 76:526–530, 1979.PubMedCrossRefGoogle Scholar
  79. Müller, H., Stoyanov, M., Borner, U., and Hempelman, G. Epidural opiates for relief of cancer pain, in Spinal Opiate Analgesia (T. L. Yaksh and H. Müller, (eds.) Springer-Verlag, Berlin-Heidelberg, New York, 1982. pp, 125–137.CrossRefGoogle Scholar
  80. Ninkovic, M., Hunt, S. P., and Gleave, J. R. W. Localization of opiate and histamine Hi-receptors in the primate sensory ganglia and spinal cord. Brain Res. 241:197–206, 1982.PubMedCrossRefGoogle Scholar
  81. Nordberg, G. Pharmacokinetic aspects of spinal morphine analgesia. Acta Anesthesiol. Scand. 79 (Suppl):7–37, 1984.Google Scholar
  82. Noueihed, R., Durant, P., and Yaksh, T. L. Studies on the effects of intrathecal sufentanil, fentanil and alfentanil in rats and cats. Anesthesiology 61:A218, 1984.CrossRefGoogle Scholar
  83. Onofrio, B. M., and Yaksh, T. L. Intrathecal delta-receptor ligand produces analgesia in man. Lancet 1:1386–1387, 1983.PubMedCrossRefGoogle Scholar
  84. Onofrio, B. M., Yaksh, T. L., and Arnold, L. E. Continuous low dose intrathecal morphine administration in the treatment of chronic pain of malignant origin. Mayo Clin. Proc. 56:516–520, 1981.PubMedGoogle Scholar
  85. Oyama, T., Fukushi, S., and Jin, T. Epidural β-endorphin in treatment of pain. Can. Anaesth. Soc. J. 29:24–26, 1982.PubMedCrossRefGoogle Scholar
  86. Paalzow, G. Development of tolerance to the analgesic effect of clonidine in rats cross-tolerance to morphine. Naunyn Schmiedebergs Arch. Pharmacol. 304:1–4, 1978.PubMedCrossRefGoogle Scholar
  87. Pasternak, G. W., Childers, S. R., and Snyder, S. H. Opiate analgesia: Evidence for mediation by a subpopulation of opiate receptors. Science 208:514–516, 1980.PubMedCrossRefGoogle Scholar
  88. Piercey, M. F., Lahti, R. A. Schroeder, L. A., Einspahr, F. J., and Barsahn, C. U-50488H, a pure kappa receptor agonist with spinal analgesic loci in the mouse. Life Sci. 31:1197–1200, 1982a.PubMedCrossRefGoogle Scholar
  89. Piercey, M. F., Varner, K., and Schroeder, L. A. Analgesic activity of intraspinally administered dynorphin and ethylketocyclazocine. Eur. J. Pharmacol. 80:283–384, 1982b.PubMedCrossRefGoogle Scholar
  90. Porreca, F., and Burks, T. F. The spinal cord as a site of opioid effects on gastrointestinal transit in the mouse. J. Pharmacol. Exp. Ther. 227:22–27, 1983.PubMedGoogle Scholar
  91. Porreca, F., Filla, A., and Burks, T. F. Spinal cord-mediated opiate effects on gastrointestinal transit in mice. Eur.J. Pharmacol. 86:135–136, 1982.PubMedCrossRefGoogle Scholar
  92. Porreca, F., Filla, A., and Burks, T. F. Studies in vivo with dynorphin(1–9): Analgesia but not gastrointestinal effects following intrathecal administration to mice. Eur. J. Pharmacol. 91:291–294, 1983.PubMedCrossRefGoogle Scholar
  93. Przewlocki, B., Shearman, G. T., and Herz, A. Mixed opioid/non opioid effects of dynorphin related peptides after intrathecal injection in the rat. Neuropeptides 3:233–240, 1983.PubMedCrossRefGoogle Scholar
  94. Pybus, D. A., and Torda, T. A. Dose—effect relationships of extradural morphine. Br. J. Anaesth. 54:1259–1262, 1982.PubMedCrossRefGoogle Scholar
  95. Rawal, N., Möllefors, K., Axelsson, K., Lingardh, G., and Widman, B. An experimental study of urodynamic effects of epidural morphine and of naloxone reversal. Anesth. Analg. 62:641–647, 1983.PubMedCrossRefGoogle Scholar
  96. Rawal, N., Sjöstrand, U., Christoffersson, E., Dahlström, B., Arvill, A., and Rydman, H. Comparison of intramuscular and epidural morphine for postoperative analgesia in the grossly obese: Influence on postoperative ambulation and pulmonary function. Anesth. Analg. 63:583–592, 1984.PubMedGoogle Scholar
  97. Reddy, S. V. R., and Yaksh, T. L. Spinal noradrenergic terminal system mediates antinociception. Brain Res. 189:391–401, 1980.PubMedCrossRefGoogle Scholar
  98. Reddy, S. V. R., Maderdrut, J. L., and Yaksh, T. L. Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J. Pharmacol. Exp. Ther. 213:525–533, 1980.PubMedGoogle Scholar
  99. Rondomanska, M., Decastro, J., and Lecron, L. The use of epidural buprenorphine for the treatment of postoperative pain, in: Spinal Opiate Analgesia (T. L. Yaksh and H. Müller, eds.), Springer-Verlag, Berlin, Heidelberg, New York, 1982, pp. 91–94.CrossRefGoogle Scholar
  100. Rosen, M. A., Hughes, S. C., Shnider, S. M., Abboud, T. K., Norton, M. Dailey, P. A. and Curtis, J. D. Epidural morphine for the relief of postoperative pain after caesarean delivery. Anesth. Analg. 62:666–672, 1983.PubMedGoogle Scholar
  101. Russell, B., and Yaksh, T. L. Antagonism by phenoxybenzamine and pentazocine of the antinociceptive effects of morphine in the spinal cord. Neuropharmacology 20:575–579, 1981.PubMedCrossRefGoogle Scholar
  102. Rutberg, H., Hakanson, E., Anderberg, B., Jorfeldt, L., Martensson, J. and Schildt, B. Effects of the extradural administration of morphine, or bupivacaine, on the endocrine response to upper abdominal surgery. Br. J. Anesth. 56:233–238, 1984.CrossRefGoogle Scholar
  103. Ritter, D. V., Skewes, D. G., and Morgan, M. Extradural opioids for postoperative analgesia. Br.J. Anesth. 53:915–920, 1981.CrossRefGoogle Scholar
  104. Rybro, L., Schurizek, A., Petersen, T. K., and Wernberger, M. Postoperative analgesia and lung function: A comparison of intramuscular with epidural morphine. Acta Anaesth. Scand. 26:514–518, 1982.PubMedCrossRefGoogle Scholar
  105. Sastry, B. R. Potentiation of presynaptic inhibition of nociceptive pathways as a mechanism for analgesia. Can. J. Physiol. Pharmacol. 58:97–100, 1980.PubMedCrossRefGoogle Scholar
  106. Schmauss, C., and Yaksh, T. L. In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J. Pharmacol. Exp. Ther. 228:1–12, 1984.PubMedGoogle Scholar
  107. Schmauss, C., Doherty, C., and Yaksh, T. L. The analgetic effects of an intrathecally administered partial opiate agonist, nalbuphine hydrochloride. Eur.J. Pharmacol. 86:1–7, 1983.CrossRefGoogle Scholar
  108. Schmauss, C., Shimohigashi, Y., Jensen, T. S., Rodbard, D., and Yaksh, T. L. Studies on spinal opiate receptor pharmacology. III. Analgetic effects of enkephalin dimers as measured by cutaneous thermal and visceral chemical evoked responses. Brain Res 337:209–215, 1985.PubMedCrossRefGoogle Scholar
  109. Schulz, R. E., Wüster, M., and Herz, A. Pharmacological characterization of the ε-opiate receptor. J. Pharmacol. Exp. Ther. 215:604–606, 1981.Google Scholar
  110. Sigg, E. B., Caprio, G., and Schneider, J. A. Synergism of amines and antagonism of reserpine to morphine analgesia. Proc. Soc. Exp. Biol. Med. 97:97–100, 1958.PubMedGoogle Scholar
  111. Spaulding, T. C., Fielding, S., Venafro, J. J., and Lal, H. Antinociceptive activity of clonidine and its potentiation of morphine analgesia. Eur. J. Pharmacol. 58:19–25, 1979.PubMedCrossRefGoogle Scholar
  112. Staiman, A., and Seeman, P. The impulse blocking concentrations of anesthetics, alcohols, anticonvulsants, barbiturates and narcotics on phrenic and sciatic nerves. Can. J. Physiol. Pharmacol. 52:535–550, 1974.PubMedCrossRefGoogle Scholar
  113. Struppler, A., Burgmayer, B., Ochs, G. B., and Pfeiffer, H. G. The effect of epidural application of opioids on spasticity of spinal origin. Life Sci. 33:607–610, 1983.PubMedCrossRefGoogle Scholar
  114. Tallarida, R. J., Cowan, A., and Adler, M. W. pA2 and receptor differentiation: A statistical analysis of competitive antagonism. Life Sci. 25:637–654, 1979.PubMedCrossRefGoogle Scholar
  115. Tang, A. H., and Schoenfeld, M. J. Comparison of subcutaneous and spinal subarachnoid injections of morphine and naloxone in analgesic tests in the rat. Eur.J. Pharmacol. 52:215–223, 1978.PubMedCrossRefGoogle Scholar
  116. Thompson, W. R., Smith, P. T., Hirst, M., Varkey, G. P., and Knill, R. L. Regional analgesic effects of epidural morphine in volunteers. Can. Anaesth. Soc.J. 28:530–536, 1981.PubMedCrossRefGoogle Scholar
  117. Thor, K. B., Roppolo, J. R., and Degroat, W. C. Naloxone-induced micturition in unanes-thesized paraplegic cats. J. Urol. 129:202–205, 1983.PubMedGoogle Scholar
  118. Tokimasa, T., Morita, K., and North, A. Opiates and clonidine prolong calcium-dependent after-hyperpolarizations. Nature 294:162–163, 1981.PubMedCrossRefGoogle Scholar
  119. Torda, T. A., and Pybus, D. A. Comparison of four narcotic analgesics for extradural analgesia. Br.J. Anesth. 54:291–295, 1982.CrossRefGoogle Scholar
  120. Torda, T. A., and Pybus, D. A. Extradural administration of morphine and bupivacaine: A controlled comparison. Br.J. Anesth. 56:141–146, 1984.CrossRefGoogle Scholar
  121. Tseng, L.-F. Tolerance and cross tolerance to morphine after chronic spinal D-Ala2D-Leu5-enkephalin infusion. Life Sci. 31:987–992, 1982.PubMedCrossRefGoogle Scholar
  122. Tung, A. S., and Yaksh, T. L. In vivo evidence for multiple opiate receptors mediating analgesia in the rat spinal cord. Brain Res. 247:75–83, 1982.PubMedCrossRefGoogle Scholar
  123. Vandermaelen, C. P., and Aghajanian, G. K. Intracellular studies showing modulation of motoneurone excitability by serotonin. Nature 287:346–347, 1980.PubMedCrossRefGoogle Scholar
  124. Wang, J.-Y., Yasuoka, S., and Yaksh, T. L. Studies on the analgetic effect of intrathecal ST-91 (2-[2,6-diethyl-phenylamino]-2-imidazoline): Antagonism, tolerance and interaction with morphine. Pharmacologist 22:302, 1980.Google Scholar
  125. Weber, H. Uber Anästhesie durch Adrenalin. Verh. Deut. Ges. Inn. Med. 21:616–619, 1904.Google Scholar
  126. Weight, F. F., and Salmoiraghi, G. C. Responses of spinal cord interneurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis. J. Pharmacol. Exp. Ther. 153:420–427, 1966.PubMedGoogle Scholar
  127. Welchew, E. A. The optimum concentration for epidural fentanyl. A randomized double-blind comparison with and without 1: 200000 adrenalin. Anaesthesia 38:1037–1041, 1983.PubMedCrossRefGoogle Scholar
  128. Werz, M. A., and MacDonald, R. L. Opioid peptides with differential affinity for mu and delta receptors decrease sensory neuron calcium-dependent action potentials. J. Pharmacol. Exp. Ther. 227:394–402, 1983.PubMedGoogle Scholar
  129. White, S. R., and Neuman, R. S. Facilitation of spinal motorneurone excitability by 5-hydroxy-tryptamine and noradrenaline. Brain Res. 188:119–127, 1980.PubMedCrossRefGoogle Scholar
  130. Wikler, A. Sites and mechanisms of action of morphine and related drugs in the central nervous system. Pharmacol Rev. 2:435–506, 1950.Google Scholar
  131. Willer, J. C., and Bussel, B. Evidence for a direct spinal mechanism in morphine-induced inhibition of nociceptive reflexes in humans. Brain Res. 287:212–215, 1980.CrossRefGoogle Scholar
  132. Wilson, P. R., and Yaksh, T. L. Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur.J. Pharmacol 51:323–330, 1978.PubMedCrossRefGoogle Scholar
  133. Wohlberg, C. J., Hackman, J. C., Ryan, G. P., and Davidoff, R. A. Hyperpolarization of primary afferent terminals mediated by α2-adrenoceptors. Soc. Neurosci. Abstr. 9:1001, 1983.Google Scholar
  134. Wood, P. L., Rackham, A., and Richard, J. Spinal analgesia: Comparison of the mu agonist morphine and the kappa agonist ethylketocyclazocine. Life Sci. 28:2119–2125, 1981.PubMedCrossRefGoogle Scholar
  135. Yaksh, T. L. Opiate receptors for behavioral analgesia resemble those related to the depression of spinal nociceptive neurons. Science 199:1231–1233, 1978a.PubMedCrossRefGoogle Scholar
  136. Yaksh, T. L. Inhibition by etorphine of the discharge of dorsal horn neurons: Effects upon the neuronal response to both high-and low-threshold sensory input in the decerebrate spinal cat. Exp. Neurol 60:23–40, 1978b.PubMedCrossRefGoogle Scholar
  137. Yaksh, T. L. Analgetic actions of intrathecal opiates in cat and primate. Brain Res. 153:205–210, 1978c.PubMedCrossRefGoogle Scholar
  138. Yaksh, T. L. Spinal opiate analgesia: Characteristics and principles of action. Pain 11:293–346, 1981.PubMedCrossRefGoogle Scholar
  139. Yaksh, T. L. In vivo studies on spinal opiate receptor systems mediating antinociception. I. Mu and delta receptor profiles in the primate. J. Pharmacol. Exp. Ther. 226:303–316, 1983.PubMedGoogle Scholar
  140. Yaksh, T. L. Multiple opiate receptor systems in brain and spinal cord: Part I. Eur.J. Anaesthesiol I:171–199, 1984a.Google Scholar
  141. Yaksh, T. L. Multiple opiate receptor systems in brain and spinal cord: Part II. Eur.J. Anaesthesiol. I:201–243, 1984b.Google Scholar
  142. Yaksh, T. L. Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol. Biochem. Behav. 22:845–858, 1985.PubMedCrossRefGoogle Scholar
  143. Yaksh, T. L., and Hammond, D. L. Peripheral and central substrates involved in the rostrad transmission of nociceptive information. Pain 13:1–85, 1982.PubMedCrossRefGoogle Scholar
  144. Yaksh, T. L., and Henry, J. L. Antinociceptive effects of intrathecally administered human β-endorphin in the rat and cat. Can. J. Physiol. Pharmacol. 56:754–760, 1978.PubMedCrossRefGoogle Scholar
  145. Yaksh, T. L., and Ruddy, S. V. R. Studies in the primate on the analgetic effects associated with intrathecal actions of opiate, α-adrenergic agonists and baclofen. Anesthesiology 54:451–467, 1981.PubMedCrossRefGoogle Scholar
  146. Yaksh, T. L., and Rudy, T. A. Chronic catheterization of the spinal subarachnoid space. Physiol. Behav. 17:1031–1036, 1976.PubMedCrossRefGoogle Scholar
  147. Yaksh, T. L., and Rudy, T. A. Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J. Pharmacol. Exp. Ther. 202:411–428, 1977.PubMedGoogle Scholar
  148. Yaksh, T. L., and Rudy, T. A. Narcotic analgesics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4:299–359, 1978.PubMedCrossRefGoogle Scholar
  149. Yaksh, T. L., and Wilson, P. R. Spinal serotonin terminal system mediates antinociception. J. Pharmacol. Exp. Ther. 208:446–453, 1979.PubMedGoogle Scholar
  150. Yaksh, T. L., Huang, S. P., Rudy, T. A., and Frederickson, R. C. A. The direct and specific opiate-like effect of Met5-enkephalin and analogues on the spinal cord. Neuroscience 2:593–596, 1977a.PubMedCrossRefGoogle Scholar
  151. Yaksh, T. L., Kohl, R. L., and Rudy, T. A. Induction of tolerance and withdrawl in rats receiving morphine in the spinal subarachnoid space. Eur.J. Pharmacol. 42:275–284, 1977b.PubMedCrossRefGoogle Scholar
  152. Yaksh, T. L., Frederickson, R. C. A., Huang, S. P., and Rudy, T. A. In vivo comparison of the receptor populations acted upon in the spinal cord by morphine and pentapeptides in the production of analgesia. Brain Res. 148:516–520, 1978.PubMedCrossRefGoogle Scholar
  153. Yaksh, T. L., Gross, K. E., and Li, C. H. Studies on the intrathecal effect of β-endorphin in primate. Brain Res. 241:261–269, 1982a.PubMedCrossRefGoogle Scholar
  154. Iyaksh, T. L., Schmauss, C., Micevych, P. E., Abay, E. O., and Go, V. L. W. Pharmacological studies on the application, disposition and release of neurotensin in the spinal cord. Ann. N.Y. Acad. Sci. 400:228–242, 1982b.CrossRefGoogle Scholar
  155. Yaksh, T. L., Howe, J. R., and Harty, G. J. Pharmacology of spinal pain modulatory systems. Ad. Pain Res. Ther. 7:57–70, 1984.Google Scholar
  156. Yaksh, T. L., Dirksen, R., and Harty, G. J. Antinociceptive action of intrathecally administered cholinomimetics in rat and cat. Eur.J. Pharmacol., (in press), 1985.Google Scholar
  157. Yasuoka, S., and Yaksh, T. L. Effects on nociceptive threshold and blood pressure of intrathecally administered morphine and α-adrenergic agonists. Neuropharmacology 22:309–315, 1983.PubMedCrossRefGoogle Scholar
  158. Yeung, J. C., and Rudy, T. A. Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive action as revealed by concurrent intrathecal and intracerebroventricular injections of morphine. J. Pharmacol. Exp. Ther. 215:663–642, 1980.Google Scholar
  159. Yoshimura, M., and North, A. R. Hyperpolarization of substantia gelatinosa neurons in vitro by enkephalin and noradrenaline. Soc. Neurosci. Abstr. 9:1129, 1983.Google Scholar
  160. Zenz, M. Epidural opiates for the treatment of cancer pain in: Recent Advances in Pain Therapy (M. Zimmerman, ed.), Springer-Verlag, Berlin Heidelberg New York, (in press), 1985.Google Scholar
  161. Zieglgansberger, W., and Bayerl, H. The mechanisms of inhibition of neuronal activity by opiates in the spinal cord of the cat. Brain Res. 115:111–128, 1976.PubMedCrossRefGoogle Scholar
  162. Zimmermann, M., Carstens, E., Schreiber, H., and Gilly, H. Excitability changes at intraspinal terminals of afferent C-and A-fibers produced by midbrain stimulation and iontophoretic application of transmitters in cat. Soc. Neurosci. Abstr. 9:254, 1983.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Tony L. Yaksh
    • 1
  1. 1.Departments of Neurosurgery and PharmacologyMayo ClinicRochesterUSA

Personalised recommendations