Advertisement

Aspects of Sensory Processing through Convergent Neurons

  • Daniel Le Bars
  • Anthony H. Dickenson
  • Jean Marie Besson
  • Luis Villanueva

Abstract

The spinal mechanisms of nociception are generally interpreted in terms of a single-channel transmission system, the gain of which can be modulated by inhibitory processes from both spinal and supraspinal origins. This interpretation is based on the intuitive supposition that neurons putatively involved in a sensory-discriminative nociceptive system might exhibit, in nonpatho-logical conditions, their highest frequencies of firing when noxious stimuli are applied to their receptive fields.

Keywords

Conditioning Stimulus Receptive Field Dorsal Horn Noxious Stimulus Dorsal Horn Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K. V., Pearl, G. S., and Honeycutt, C. Behavioural evidence showing the predominance of diffuse pain stimuli over discrete stimuli in influencing perception. J. Neurosci. Res. 2:283–289, 1976.PubMedCrossRefGoogle Scholar
  2. Applebaum, A. E., Beall, J. E., Foreman, R. D., and Willis, W. D. Organization and receptive fields of primate spinothalamic tract neurons. J. Neurophysiol. 38:572–586, 1975.PubMedGoogle Scholar
  3. Belcher, G., Ryall, R. W. and Schaffner, R. The differential effects of 5-hydroxytryptamine, noradrenaline and raphé stimulation on nociceptive and non nociceptive dorsal horn interneurons in the cat. Brain Res. 151:307–321, 1978.PubMedCrossRefGoogle Scholar
  4. Bennett, G. J., Hayashi, H., Abdelmoumene, M., and Dubner, R. Physiological properties of stalked cells of the substantia gelatinosa intracellularly stained with horseradish peroxidase. Brain Res. 164:285–289, 1979.PubMedCrossRefGoogle Scholar
  5. Bennett, G. J., Abdelmoumene, M., Hayashi, H., and Dubner, R. Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J. Comp. Neurol. 194:809–827, 1980.PubMedCrossRefGoogle Scholar
  6. Besson, J. M., Conseiller, C., Hammann, K. F., and Maillard, M. C. Modifications of dorsal horn cell activities in the spinal cord, after intra-arterial injection of bradykinin. J. Physiol. (Land.) 221:189–205, 1972.Google Scholar
  7. Besson, J. M., Catchlove, R. F. H., Feltz, P., and Le Bars, D. Further evidence for post-synaptic inhibitions on lamina V dorsal horn interneurons. Brain Res. 66:531–536, 1974.CrossRefGoogle Scholar
  8. Besson, J. M., Guilbaud, G., and Le Bars, D. Descending inhibitory influences exerted by the brain stem upon the activities of dorsal horn lamina V cells induced by intra-arterial injection of bradykinin into the limbs. J. Physiol. (Lond.) 248:725–739, 1975.Google Scholar
  9. Brown, A. G., and Réthelyi, M. (eds.) Sensory Cord Sensation, Scottish Academy Press, Edinburgh, 1981, pp. 331–336.Google Scholar
  10. Brown, A. G., Hammann, W. C., and Martin, H. F. Interactions of cutaneous myelinated (A) and non myelinated (C) fibres on transmission through the spinocervical tract. Brain Res. 53:222–226, 1973.PubMedCrossRefGoogle Scholar
  11. Burton, H. Responses of spinal cord neurons to systematic changes in hindlimb skin temperatures in cats and primates. J. Neurophysiol. 38:1060–1079, 1975.PubMedGoogle Scholar
  12. Cadden, S. W., Villanueva, L., Chitour, D., and Le Bars, D. Depression of activities of dorsal horn convergent neurones by propriospinal mechanisms triggered by noxious input; comparison with diffuse noxious inhibitory controls (DNIC). Brain Res. 275:1–11, 1983.PubMedCrossRefGoogle Scholar
  13. Calvillo, O., Henry, J. L., and Neuman, R. S. Actions of narcotic analgesics and antagonists on spinal units responding to natural stimulation in the cat. Can. J. Physiol. Pharmacol. 57:652–663, 1979.PubMedCrossRefGoogle Scholar
  14. Carstens, E., Yokota, T., and Zimmermann, M. Inhibition of spinal neuronal responses to noxious skin testing by stimulation of mesencephalic periaqueductal gray in the cat. J. Neurophysiol. 42:558–568, 1979.PubMedGoogle Scholar
  15. Carstens, E., Klumpp, D., and Zimmermann, M. Differential inhibitory effects of medial and lateral midbrain stimulation on spinal neuronal discharges to noxious skin heating in the cat. J. Neurophysiol. 43:332–342, 1980.PubMedGoogle Scholar
  16. Carstens, E., Bihl, H., Irvine, D. R. F., and Zimmermann, M. Descending inhibitions from medial and lateral midbrain of spinal dorsal horn neuronal responses to noxious and non-noxious cutaneous stimuli in the cat. J. Neurophysiol. 45:1029–1042, 1981.PubMedGoogle Scholar
  17. Cervero, F., Iggo, A., and Ogawa, H. Nociceptor-driven dorsal horn neurons in the lumbar spinal cord of the cat. Pain 2:5–24, 1976.PubMedCrossRefGoogle Scholar
  18. Christensen, B. N., and Perl, E. R. Spinal neurons specifically excited by noxious or thermal stimuli: Marginal zone of the dorsal horn. J. Neurophysiol. 33:293–307, 1970.PubMedGoogle Scholar
  19. Curtis, D. R., and Watkins, J. C. The excitation and depression of spinal neurones by structurally related amino acids. J. Neurochem. 6:117–141, 1960.PubMedCrossRefGoogle Scholar
  20. Curtis, D. R., Phillis, J. W., and Watkins, J. C. Chemical excitation of spinal neurones. Nature 183:611–612, 1959.PubMedCrossRefGoogle Scholar
  21. Curtis, D. R., Phillis, J. W., and Watkins, J. C. The chemical excitation of spinal neurones by certain acidic amino-acids. J. Physiol. (Lond.), 150:656–682, 1960.Google Scholar
  22. Curzon, G., and Tricklebank, M. D. (eds.) Stress-Induced Analgesia, John Wiley & Sons, London, 1984.Google Scholar
  23. Dickenson, A. H., and Le Bars, D. Diffuse noxious inhibitory controls (DNIC) involve trigemino-and spinothalamic neurones in the rat. Exp. Brain Res. 49:174–180, 1983a.PubMedCrossRefGoogle Scholar
  24. Dickenson, A. H., and Le Bars, D. Morphine microinjections into periaqueductal grey matter of the rat: Effects on dorsal horn neuronal responses to C-fibre activity and diffuse noxious inhibitory controls. Life Sci. 33(Sl):549–554, 1983b.PubMedCrossRefGoogle Scholar
  25. Dickenson, A. H., Le Bars, D., and Besson, J. M. Diffuse noxious inhibitory controls (DNIC). Effects on trigeminal nucleus caudalis neurones in the rat. Brain Res. 200:293–305, 1980.PubMedCrossRefGoogle Scholar
  26. Duggan, A. W., and Griersmith, B. T. Inhibition of the spinal transmission of nociceptive information by supraspinal stimulation in the cat. Pain 6:149–161, 1979.PubMedCrossRefGoogle Scholar
  27. Dunker, K. Some preliminary experiments on the mutual influence of pains. Psychol. Forsch. 21:311–326, 1937.CrossRefGoogle Scholar
  28. Fitzgerald, M. The contralateral input to the dorsal horn of the spinal cord in the decerebrate spinal rat. Brain Res. 236:275–287, 1982.PubMedCrossRefGoogle Scholar
  29. Foreman, R. D., Beall, J. E., Applebaum, A. E., Coulter, J. D., and Willis, W. D. Effects of dorsal column stimulation on primate spinothalamic tract neurons. J. Neurophysiol. 39:534–546, 1976.PubMedGoogle Scholar
  30. Foreman, R. D., Schmidt, R. F., and Willis, W. D. Convergence of muscle and cutaneous input onto spinothalamic tract neurons. Brain Res. 124:555–560, 1977.PubMedCrossRefGoogle Scholar
  31. Foreman, R. D., Schmidt, R. F., and Willis, W. D. Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. J. Physiol. (Lond.) 286:215–231, 1979.Google Scholar
  32. Foreman, R. D., Hancock, M. B., and Willis, W. D. Responses of spinothalamic tract cells in the thoracic spinal cord of the monkey to cutaneous and visceral inputs. Pain 11:149–162, 1981.PubMedCrossRefGoogle Scholar
  33. Fox, E. J., and Melzack, R. Comparison of transcutaneous electrical stimulation and acupuncture in the treatment of chronic pain. Adv. Pain Res. Ther. 1:797–801, 1976a.Google Scholar
  34. Fox, E. J., and Melzack, R. Transcutaneous electrical stimulation and acupuncture: Comparison of treatment for low-back pain. Pain 2:141–148, 1976b.PubMedCrossRefGoogle Scholar
  35. Galindo, A., Krnjevic, K., and Schwartz, S. Microiontophoretic studies on neurones in the cuneate nucleus. J. Physiol. (Lond.) 192:359–377, 1967.Google Scholar
  36. Galindo, A., Krnjević, K., and Schwartz, S. Patterns of firing in cuneate neurons and some effects of Flaxedil. Exp. Brain Res. 5:87–101, 1968.PubMedCrossRefGoogle Scholar
  37. Gammon, G. D., and Starr, I. Studies on the relief of pain by counterirritation. J. Clin. Invest. 20:13–20, 1941.PubMedCrossRefGoogle Scholar
  38. Gerhart, K. D., Wilcox, T. K., Chung, J. M., and Willis, W. D. Inhibition of nociceptive and non-nociceptive responses of primate spinothalamic cells by stimulation in medial brainstem. J. Neurophysiol. 45:121–136, 1981a.PubMedGoogle Scholar
  39. Gerhart, K. D., Yezierski, R. P., Giesler, G. J., Jr., and Willis, W. D. Inhibitory receptive fields of primate spinothalamic tract cells. J. Neurophysiol. 46:1309–1325, 1981b.PubMedGoogle Scholar
  40. Giesler, G. J., Jr., Menétrey, D., Guilbaud, G., and Besson, J. M. Lumbar cord neurons at the origin of the spinothalamic tract in the rat. Brain Res. 118:320–324, 1976.PubMedCrossRefGoogle Scholar
  41. Gregor, M., and Zimmermann, M. Characteristics of spinal neurones responding to cutaneous myelinated and unmyelinated fibres. J. Physiol. (Lond.) 221:555–576, 1972.Google Scholar
  42. Guilbaud, G., Besson, J. M., Liebeskind, J. C., and Oliveras, J. L. Analgésie induite par stimulation de 1a substance grise périaqueducale chez le chat: Données comportementales et modifications de l’activité des interneurones de la corne dorsale de la moelle. C. R. Acad. Sci. [D] (Paris) 275:1055–1057, 1972.Google Scholar
  43. Han, L. S. and Terenius, L. Neurochemical basis of acupuncture analgesia. Annu. Rev. Pharmacol. Toxicol. 22:193–220, 1982.PubMedCrossRefGoogle Scholar
  44. Handwerker, H. O., Iggo, A., and Zimmermann, M. Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain 1:147–165, 1975.PubMedCrossRefGoogle Scholar
  45. Hardy, J. D., Wolff, H. G., and Goodell, H. Studies on pain. A new method for measuring pain threshold: Observations on spatial summation of pain. J. Clin. Invest. 19:649–657, 1940.PubMedCrossRefGoogle Scholar
  46. Hayes, R. L., Price, D. D., and Dubner, R. Behavioural and physiological studies of sensory coding and modulation of trigeminal nociceptive input. Adv. Pain Res. Ther. 3:219–243, 1979a.Google Scholar
  47. Hayes, R. L., Price, D. D., Ruda, M., and Dubner, R. Suppression of nociceptive responses in the primate by electrical stimulation of the brain or morphine administration: Behavioral and electrophysiological comparisons. Brain Res. 167:417–421, 1979b.PubMedCrossRefGoogle Scholar
  48. Hazouri, L. A., and Mueller, A. D. Pain threshold studies on paraplegic patients. Arch. Neurol. Psychiatry 64:607–613, 1950.CrossRefGoogle Scholar
  49. Hillman, P., and Wall, P. D. Inhibitory and excitatory factors influencing the receptive fields of lamina 5 spinal cord cells. Exp. Brain Res. 9:284–306, 1969.PubMedGoogle Scholar
  50. Hoffman, D. S., Dubner, R., Hayes, R. L., and Medlin, T. P. Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. I. Response to innocuous and noxious thermal stimuli. J. Neurophysiol. 46:409–427, 1981.PubMedGoogle Scholar
  51. Homma, E., Collins, J. G., and Kitahata, L. M. Effects of intrathecal morphine on activity of dorsal horn neurons activated by noxious heat. Adv. Pain Res. Ther. 5:481–486, 1983.Google Scholar
  52. Hong, S. K., Kniffki, K. D., Mense, S., Schmidt, R. F., and Wendish, M. Descending influences on the responses of spinocervical tract neurons to chemical stimulation of fine muscle afferents. J. Physiol. (Lond.) 290:129–140, 1979.Google Scholar
  53. Iggo, A. Activation of cutaneous nociceptors and their action on dorsal horn neurons. Adv. Neurol 4:1–9, 1974.Google Scholar
  54. Jeans, M. E. Relief of chronic pain by brief, intense transcutaneous electrical stimulation: A double blind study. Adv. Pain Res. Ther. 3:601–606, 1979.Google Scholar
  55. Johnson, S. M., and Duggan, A. W. Evidence that the opiate receptors of the substantia gelatinosa contribute to the depression by intravenous morphine of the spinal transmission of impulses in unmyelinated primary afferents. Brain Res. 207:223–228, 1981.PubMedCrossRefGoogle Scholar
  56. Jordan, L. M., Kenshalo, D. R., Martin, R. F., Haber, L. H., and Willis, W. D. Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine. Pain 5:135–142, 1978.PubMedCrossRefGoogle Scholar
  57. Kenshalo, D. R., Leonard, R. B., Chung, J. M. and Willis, W. D. Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli. J. Neurophysiol. 42:1370–1389, 1979.PubMedGoogle Scholar
  58. Kitahata, L. M. Kosaka, Y., Taub, A., Bonikos, K., and Hoffert, M. Lamina specific suppression of dorsal-horn unit activity by morphine sulfate. Anesthesiology 41:39–48, 1974.PubMedCrossRefGoogle Scholar
  59. Kniffki, K. D., Mense, S., and Schmidt, R. F. The spinocervical tract as a possible pathway for muscular nociception. J. Physiol. (Paris) 73:359–366, 1977.Google Scholar
  60. Krnjevic, K., and Phillis, J. W. Iontophoretic studies of neurones in the mammalian cerebral cortex. J. Physiol. (Lond.) 165:274–304, 1963.Google Scholar
  61. Le Bars, D., and Chitour, D. DO convergent neurones in the spinal dorsal horn discriminate nociceptive from non-nociceptive information? Pain 17:1–19, 1983.PubMedCrossRefGoogle Scholar
  62. Le Bars, D., Menétrey, D., Conseiller, C., and Besson, J. M. Depressive effects of morphine upon lamina V cells activities in the dorsal horn of the spinal cat. Brain Res. 98:261–277, 1975.PubMedCrossRefGoogle Scholar
  63. Le Bars, D., Guilbaud, G., Jurna, I., and Besson, J. M. Differential effects of morphine on response of dorsal horn lamina V type cells elicited by A and C fibre stimulation in the spinal cat. Brain Res. 115:518–524, 1976.PubMedCrossRefGoogle Scholar
  64. Le Bars, D., Dickenson, A. H., and Besson, J. M. Diffuse noxious inhibitory controls (DNIC). I—Effects on dorsal horn convergent neurones in the rat. Pain 6:283–304, 1979a.PubMedCrossRefGoogle Scholar
  65. Le Bars, D., Dickenson, A. H., and Besson, J. M. Diffuse noxious inhibitory controls (DNIC). II—Lack of effect on non convergent neurones, supraspinal involvement and theoretical implications. Pain 6:305–327, 1979b.PubMedCrossRefGoogle Scholar
  66. Le Bars, D., Rivot, J. P., Guilbaud, G., Menétrey, D., and Besson, J. M. The depressive effect of morphine on the C fibre response of dorsal horn neurones in the spinal rat pretreated or not by pCPA. Brain Res. 176:337–353, 1979c.PubMedCrossRefGoogle Scholar
  67. Le Bars, D., Guilbaud, G., Chitour, D., and Besson, J. M. Does systemic morphine increase descending inhibitory controls of dorsal horn neurones involved in nociception? Brain Res. 202:223–228 1980.PubMedCrossRefGoogle Scholar
  68. Le Bars, D., Chitour, D., and Clot, A. M. The encoding of thermal stimuli by diffuse noxious inhibitory controls (DNIC). Brain Res. 230:394–399, 1981a.PubMedCrossRefGoogle Scholar
  69. Le Bars, D., Chitour, D., Kraus, E., Clot, A. M., Dickenson, A. H., and Besson, J. M. The effect of systemic morphine upon diffuse noxious inhibitory controls (DNIC) in the rat: Evidence for a lifting of certain descending inhibitory controls of dorsal horn convergent neurones. Brain Res. 215:257–274, 1981b.PubMedCrossRefGoogle Scholar
  70. Le Bars, D., Dickenson, A. H., and Besson, J. M. The triggering of bulbo-spinal serotonergic inhibitory controls by noxious peripheral inputs, in: Brainstem Control of Spinal Mechanisms, Fernström Foundation Series 1 (B. Sjöølund and A. Björklund, eds.), Elsevier, Amsterdam 1982, pp. 381–410.Google Scholar
  71. Le Bars, D. Dickenson, A. H., and Besson, J. M. Opiate analgesia and descending control systems. Adv. Pain Res. Ther. 5:341–372, 1983a.Google Scholar
  72. Le Bars, D., Roby, A., and Willer, J. C. Effects of heterotopic thermal stimuli on a nociceptive flexion reflex and the related pain sensation in man. J. Physiol. (Lond.) 336:31–32P, 1983b.Google Scholar
  73. Le Bars, D., Calvino, B., Villanueva, L., and Cadden, S. Physiological approaches to counterirritation phenomena, in: Stress-Induced Analgesia (G. Curzon and M. D. Tricklebank, eds.), John Wiley & Sons, London, 1984, pp. 67–101.Google Scholar
  74. Levante, A., Lamour, Y., Guilbaud, G., and Besson, J. M. Spinothalamic cell activity in the monkey during intense nociceptive stimulation; intra-arterial injection of bradykinin into the limbs. Brain Res. 88:550–554, 1975.CrossRefGoogle Scholar
  75. Levine, J. D., Gormley, J., and Fields, H. L. Observations on the analgesic effects of needle puncture (acupuncture). Pain 2:149–159, 1976.PubMedCrossRefGoogle Scholar
  76. Liebeskind, J. C., Guilbaud, G., Besson, J. M., and Oliveras, J. L. Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: Behavioral observations and inhibitory effects on spinal cord interneurons. Brain Res. 50:441–446, 1973.PubMedCrossRefGoogle Scholar
  77. Lindblom, U., Tapper, D. N., and Wiesenfield, Z. The effect of dorsal horn column stimulation on the nociceptive response of dorsal horn cells and its relevance to pain suppression. Pain 4:133–144, 1977.PubMedCrossRefGoogle Scholar
  78. Mann, F. Acupuncture analgesia, report of 100 experiments. Br.J. Anaesth. 46:361–364, 1974.PubMedCrossRefGoogle Scholar
  79. Mc Creery, D., and Bloedel, J. R. Effect of trigeminal stimulation on the excitability of cat spinothalamic neurons. Brain Res. 117:136–140, 1976.CrossRefGoogle Scholar
  80. Melzack, R. Prolonged relief of pain by brief, intense transcutaneous somatic stimulation. Pain 1:357–373, 1975.PubMedCrossRefGoogle Scholar
  81. Melzack, R., and Wall, P. D. Pain mechanisms: A new theory. Science 150:971–979, 1965.PubMedCrossRefGoogle Scholar
  82. Melzack, R., Stillwell, D. M., and Fox, E. J. Trigger points and acupuncture points for pain: Correlations and implications. Pain 3:3–24, 1977.PubMedCrossRefGoogle Scholar
  83. Mendell, L. M. Physiological properties of unmyelinated fiber projections to the spinal cord. Exp.Neurol. 16:316–332, 1966.PubMedCrossRefGoogle Scholar
  84. Mendell, L. M., and Wall, P. D. Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibers. Nature 206:97–99, 1965.PubMedCrossRefGoogle Scholar
  85. Menétrey, D., Giesler, G. J., Jr., and Besson, J. M. An analysis of responses properties of spinal cord dorsal horn neurones to non-noxious and noxious stimuli in the spinal rat. Exp. Brain Res. 27:15–33, 1977.PubMedCrossRefGoogle Scholar
  86. Menétrey, D., Chaouch, A., and Besson, J. M. Responses of spinal cord dorsal horn neurons to non noxious and noxious cutaneous temperature changes in the spinal rat. Pain 6:265–282, 1979.PubMedCrossRefGoogle Scholar
  87. Merskey, H., and Evans, P. R. Variation in pain complaint threshold in psychiatric and neurological patients with pain. Pain 1:73–79, 1975.PubMedCrossRefGoogle Scholar
  88. Milne, R. J., Foreman, R. D., Giesler, G. J., Jr., and Willis, W. D. Convergence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurons. Pain 11:163–183, 1981.PubMedCrossRefGoogle Scholar
  89. Niemegeers, C. J. E., van Bruggen, J. A. A., and Janssen, P. A. J. Suprofen, a potent antagonist of acetic-induced writhing in rat. Arzneim. Forsch. 25:1505–1509, 1975.Google Scholar
  90. Noordenbos, W. Pain, Elsevier, Amsterdam, 1959.Google Scholar
  91. Oliveras, J. L., Besson, J. M., Guilbaud, G., and Liebeskind, J. C. Behavioral and electro-physiological evidence of pain inhibition from midbrain stimulation in the cat. Exp. Brain Res. 20:32–44, 1974.PubMedCrossRefGoogle Scholar
  92. Parsons, C. M., and Goetzl, F. R. Effect of induced pain on pain threshold. Proc. Soc. Exp. Biol. 60:327–329, 1945.PubMedGoogle Scholar
  93. Peertoovara, A., Kemppainen, P., Johansson, G., and Karonen, S. L. Ischemic pain non segmentally produces a predominant reduction of pain and thermal sensitivity in man: A selective role for endogenous opioids. Brain Res. 251:83–92, 1982.CrossRefGoogle Scholar
  94. Pircio, A. W., Fedele, C. I., and Bierwagen, M. E. A new method for the evaluation of analgesic activity using adjuvant-induced arthritis in the rat. Eur.J. Pharmacol. 31:207–215, 1975.PubMedCrossRefGoogle Scholar
  95. Pomeranz, B., Wall, P. D., and Weber, W. V. Cord cells reponding to fine myelinated afferents from viscera, muscle and skin. J. Physiol. (Loud.) 199:511–532, 1968.Google Scholar
  96. Price D. D., and Browe, A. C. Responses of spinal cord neurons to graded noxious and non noxious stimuli. Exp. Neurol. 48:201–221, 1975.PubMedCrossRefGoogle Scholar
  97. Price, D. D., and Mayer, D. J. Physiological laminar organization of the dorsal horn of M. mulatta. Brain Res. 79:321–325, 1974.CrossRefGoogle Scholar
  98. Price, D. D., and Wagman, I. H. The physiological roles of A and C fiber inputs to the dorsal horn of M. mulatta. Exp. Neurol. 29:373–390, 1970.Google Scholar
  99. Price, D. D., Hull, C. D., and Buchwald, N. A. Intracellular responses of dorsal horn cells to cutaneous and sural nerve A and C fiber stimuli. Exp. Neurol. 33:291–309, 1971.PubMedCrossRefGoogle Scholar
  100. Price, D. D., Dubner, R., and Hu, J. W. Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal and nociceptive stimulation of monkey’s face. J Neurophysiol. 39:936–953, 1976.PubMedGoogle Scholar
  101. Price, D. D., Hu, J. W., Dubner, R., and Gracely, R. Pain suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain 3:57–68, 1977.PubMedCrossRefGoogle Scholar
  102. Price, D. D., Hayes, R. L., Ruda, M. A., and Dubner, R. Spatial and temporal transformation of input to spinothalamic tract neurons and their relation to somatic sensations. J. Neurophysiol. 41:933–947, 1978.PubMedGoogle Scholar
  103. Price, D. D., Hayashi, H., Dubner, R., and Ruda, M. A. Functional relationships between neurons of the marginal and substantia gelatinosa layers of the primate dorsal horn. J. Neurophysiol. 42:1590–1608, 1979.PubMedGoogle Scholar
  104. Puil, E. S-Glutamate: Its interactions with spinal neurons. Brain Res. Rev. 3:229–322, 1981.CrossRefGoogle Scholar
  105. Rexed, B. A cytoarchitectonic atlas of the spinal cord in the cat. J. Comp. Neurol. 100:297–380, 1954.PubMedCrossRefGoogle Scholar
  106. Ruch, T. C. Visceral sensation and referred pain, in: Howell’s Textbook of Physiology (J. F. Bulton, ed.), W. B. Saunders, Philadelphia, 1949, pp. 360–374.Google Scholar
  107. Ruch, T. C. Pathophysiology of pain, in: Physiology and Biophysics, Vol. 1 (T. C. Ruch and H. D. Patton, eds.), W. B. Saunders, Philadelphia, 1979, pp. 309–316.Google Scholar
  108. Schouenborg, J., and Dickenson, A. H. The effects of a distant noxious stimulation on A and C fibre evoked flexion reflexes and neuronal activity in dorsal horn of the rat. Brain Res. 328:23–32, 1985.PubMedCrossRefGoogle Scholar
  109. Villanueva, L., and Le Bars, D. The encoding of thermal stimuli applied to the tail of the rat by lowering the excitability of trigeminal convergent neurones. Brain Res. 330:245–251, 1985.PubMedCrossRefGoogle Scholar
  110. Villanueva, L., Cadden, S. W., and Le Bars, D. Evidence that diffuse noxious inhibitory controls (DNIC) are mediated by a final post-synaptic inhibitory mechanism. Brain Res. 298:67–74, 1984a.PubMedCrossRefGoogle Scholar
  111. Villanueva, L., Cadden, S. W., and Le Bars, D. Diffuse noxious inhibitory controls (DNIC): Evidence for post-synaptic inhibition of trigeminal nucleus caudalis convergent neurones. Brain Res. 321:165–168, 1984b.PubMedCrossRefGoogle Scholar
  112. Wagman, I. H., and Price, D. D. Responses of dorsal horn cells of M. mulatta to cutaneous and sural nerve A and C-fiber stimulation. J. Neurophysiol. 32:803–817, 1969.PubMedGoogle Scholar
  113. Wall, P. D. Cord cells responding to touch, damage and temperature of skin. J. Neurophysiol. 23:197–210, 1960.PubMedGoogle Scholar
  114. Wall, P. D. The laminar organizaton of dorsal horn and effects of descending impulses. J. Physiol. (Lond.) 188:403–423, 1967.Google Scholar
  115. Wall, P. D. Dorsal horn electrophysiology, in: Handbook of Sensory Physiology, Vol. II, Somatosensory System (A. Iggo, ed.), Springer-Verlag, New York, 1973, pp. 253–270.CrossRefGoogle Scholar
  116. Wall, P. D. The gate control theory of pain mechanisms. Brain 101:1–18, 1978.PubMedCrossRefGoogle Scholar
  117. Wall, P. D., Freeman, J., and Major, D. Dorsal horn cells in spinal and in freely moving rats. Exp. Neurol. 19:519–529, 1967.PubMedCrossRefGoogle Scholar
  118. Wand-Tetley, J. I. Historical methods of counter-irritation. Ann. Phys. Med. 3:90–98, 1956.PubMedGoogle Scholar
  119. Willer, J. C., Roby, A., and Le Bars, D. Psychophysical and electrophysiological approaches to the pain-relieving effects of heterotopic nociceptive stimuli. Brain 107:1095–1112, 1984.PubMedCrossRefGoogle Scholar
  120. Willis, W. D. Ascending pathways from the dorsal horn, in: Spinal Cord Sensation (A. G. Brown and M. Rethelyi, eds.) Scottish Academy Press, Edinburgh, 1981, pp. 169–178.Google Scholar
  121. Willis, W. D. Control of nociceptive transmission in the spinal cord, in: Progress in Sensory Physiology, vol. 3 (D. Ottoson, ed.), Springer-Verlag, New York, 1982, pp. 1–155.Google Scholar
  122. Willis, W. D., Trevino, D. L., Coulter, J. D., and Maunz, R. A. Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol. 37:358–372, 1974.PubMedGoogle Scholar
  123. Woolf, C. J., and Fitzgerald, M. Lamina-specific alteration of C-fibre evoked activity by morphine in the dorsal horn of the rat spinal cord. Neurosci. Lett. 25:37–41, 1981.PubMedCrossRefGoogle Scholar
  124. Yeung, J. C., and Rudy, T. A. Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive action as revealed by concurrent intrathecal and intracerebroventricular injections of morphine. J. Pharmacol. Exp. Ther. 215:633–642, 1980.PubMedGoogle Scholar
  125. Yezierski, R. P., Wilcox, T. K., and Willis, W. D. The effects of serotonin antagonists on the inhibition of primate spinothalamic tract cells produced by stimulation in nucleus raphé magnus or the periaqueductal gray. J. Pharmacol. Exp. Ther. 220:266–277, 1982.PubMedGoogle Scholar
  126. Zimmermann, M. Encoding in dorsal horn interneurons receiving noxious and nonnoxious afferents. J. Physiol. (Paris) 73:221–232, 1977.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Daniel Le Bars
    • 1
  • Anthony H. Dickenson
    • 2
  • Jean Marie Besson
    • 1
  • Luis Villanueva
    • 1
  1. 1.Research Unit of Pharmacological Neurophysiology of Inserm (U. 161)ParisFrance
  2. 2.Department of PharmacologyUniversity College, LondonEngland

Personalised recommendations