The Question of How the Dorsal Horn Encodes Sensory Information

  • Donald D. Price


The dorsal gray matter of the mammalian spinal cord is the origin of ascending somatosensory pathways. Impulses from thermoreceptive, nociceptive, and mechanoreceptive afferents excite various types of second-order neurons of the dorsal horn. Radical transformations are made of these inputs in such a manner that responses to somatosensory stimuli do not simply passively reflect the responses of cutaneous receptors. These transformations have important implications for perception of somatosensory sensations. The dorsal horn also is the central focal point for autonomic and somatomotor reflexes initiated by stimulation of body tissues. This region clearly does not function autonomously but is under the influence of several descending control mechanisms. For these reasons and others, it is important to characterize these afferent input—output relationships in terms of their role in encoding sensory information.


Receptive Field Dorsal Horn Dorsal Horn Neuron Impulse Frequency Spinothalamic Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Applebaum, A. E., Beall, J. E., Foreman, R. D., and Willis, W. D. Organization and receptive fields of primate spinothalamic tract neurons. J. Neurophysiol. 38:572–586, 1975.PubMedGoogle Scholar
  2. Bennett, G. J., Hayashi, H., Abdelmoumene, M., and Dubner, R. Physiological properties of stalked cells of the substantia gelatinosa intracellularly stained with horseradish peroxidase. Brain Res. 164:285–289, 1979.PubMedCrossRefGoogle Scholar
  3. Bennett, G. J., Abdelmoumene, M., Hayashi, H., and Dubner, R. Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J. Comp. Neurol. 194:809–827, 1980.PubMedCrossRefGoogle Scholar
  4. Brown, A. G., and Franz, D. N. Patterns of response in spinocervical tract neurons to different stimuli of long duration. Brain Res. 17:156–160, 1970.PubMedCrossRefGoogle Scholar
  5. Brown, A. G., Rose, P. K., and Snow, A. J. The morphology of spinocervical tract neurons revealed by intracellular injection of horseradish peroxidase. J. Physiol. (Lond.) 270:747–764, 1977a.Google Scholar
  6. Brown, A. G., Rose, P. K., and Snow, P. J. The morphology of hair follicle afferent fiber collaterals in the spinal cord of the cat. J. Physiol. (Lond.) 272:779–797, 1977b.Google Scholar
  7. Brown, A. G., Rose, P. K., and Snow, P. J. Morphology and organization of axon collaterals from afferent fibers of slowly adapting type I units in cat spinal cord. J. Physiol. (Lond.) 277:15–27, 1978.Google Scholar
  8. Chung, J. M., Kenshalo, D. R., Jr., Gerhart, K. D., and Willis, W. D. Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys. J. Neurophysiol. 42:1354–1369, 1979.PubMedGoogle Scholar
  9. Coulter, J. D., Maunz, R. A., and Willis, W. D. Effects of stimulation of sensorimotor cortex on primate spinothalamic neurons. Brain Res. 65:351–356, 1974.PubMedCrossRefGoogle Scholar
  10. Coulter, J. D., Foreman, R. D., Beall, J. E., and Willis, W. D. Cerebral cortical modulation of primate spinothalamic neurons. Adv. Pain Res. Ther. 1:271–277, 1976.Google Scholar
  11. Denny-Brown, D., Kirk, E. J., and Yanagisawa, N. The tract of Lissauer in relation to sensory transmission in the dorsal horn of the spinal cord in the macaque monkey. J. Comp. Neurol. 151:175–200, 1972.CrossRefGoogle Scholar
  12. Dubner, R., and Bennett, G. J. Spinal and trigeminal mechanisms of nociception. Annu. Rev. Neurosa. 6:381–418, 1983.CrossRefGoogle Scholar
  13. Dubner, R., Gobel, S., and Price, D. D. Peripheral and central “pain” pathways. Adv. Pain Res. Ther. 1:137–248, 1976.Google Scholar
  14. Dubner, R., Ruda, M. A., Miletic., V., Hoffert, M. J., Bennett, G. J., Nishikawa, N., and Doffield, J. Neural circuitry mediating nociception in the medullary and spinal dorsal horns. Adv. Pain Res. Ther. 6:151–166, 1983.Google Scholar
  15. Erickson, R. P. Parallel “population” neural coding in feature extraction, in: The Neurosciences, Vol. III (F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, 1972, pp. 155–169.Google Scholar
  16. Giesler, G. J., Jr., Yezierski, R. P., Gerhart, K. D., Willis, W. D. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiologically novel population of spinal cord neurons. J. Neurophysiol. 46:1285–1308, 1981.PubMedGoogle Scholar
  17. Gobel, S. Neural circuitry in the substantia gelatinosa of Rolando: Anatomical insights. Adv. Pain Res. Ther. 3:175–195, 1979.Google Scholar
  18. Gobel, S., Falls, W. M., Bennett, G. J., Abdelmoumene, M., Hayashi, H., and Humphrey, E. An EM analysis of the synaptic connections of horseradish peroxidase-filled stalked cells and islet cells in the substantia gelatinosa of the adult cat spinal cord. J. Comp. Neurol. 194:781–807, 1980.PubMedCrossRefGoogle Scholar
  19. Gobel, S., Falls, W. M., and Humphrey, E. Morphology of ultrafine primary axons in lamina I of the spinal dorsal horn: Candidates for the terminal axonal arbors with unmyelinated (C) axons. J. Neurosa. 1:1163–1179, 1981.Google Scholar
  20. Hayes, R. L., Price, D. D., Ruda, M. A., and Dubner, R. Suppression of nociceptive reflexes in the primate by electrical stimulation of the brain or morphine administration: Behavioral and electrophysiological comparisons. Brain Res. 167:417–421, 1979a.PubMedCrossRefGoogle Scholar
  21. Hayes, R. L., Price, D. D., and Dubner, R. Behavioral and physiological studies of sensory coding and modulation of trigeminal nociceptive input. Adv. Pain Res. Ther. 3:219–243, 1979b.Google Scholar
  22. Hayes, R. L., Dubner, R., and Hoffman, D. S., Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task II: Behavioral modulation of responses to thermal and mechanical stimuli. J. Neurophysiol. 46:428–443, 1981.PubMedGoogle Scholar
  23. Hoffman, D. S., Dubner, R., Hayes, R. L., and Medlin, T. P. Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task I: Responses to innocuous and noxious thermal stimuli. J. Neurophysiol. 46:409–427, 1981.PubMedGoogle Scholar
  24. Kenshalo, D. R., Jr., Leonard, R. B., Chung, J. M., and Willis, W. D. Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli. J. Neurophysiol. 42:1370–1389, 1979.PubMedGoogle Scholar
  25. Kumazawa, T., and Perl, E. R. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: Indications of their place in dorsal horn functional organization. J. Comp. Neurol. 177:417–434, 1978.PubMedCrossRefGoogle Scholar
  26. Light, A. R., and Perl, E. R. Differential termination of large-diameter and small-diameter primary afferent fibers in the spinal dorsal grey matter as indicated by labelling with horseradish peroxidase. J. Comp. Neurol. 186:117–139, 1979.PubMedCrossRefGoogle Scholar
  27. Matsushita, M., Michiko, I., and Hosoda, Y., The location of spinal neurons with long descending axons in the cat: A study with the horseradish peroxidase technique. J. Comp. Neurol. 184:63–80, 1979.PubMedCrossRefGoogle Scholar
  28. Mayer, D. J., Price, D. D., and Becker, D. P. Neurophysiological characterization of the anterolateral spinal cord neurons contributing to pain perception in man. Pain 1:51–58, 1975.PubMedCrossRefGoogle Scholar
  29. Mehler, W. R., Feterman, M. E., and Nauta, W. J. H. Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 83:718–750, 1960.PubMedCrossRefGoogle Scholar
  30. Melzack, R. The Puzzle of Pain, Basic Books, New York, 1973.Google Scholar
  31. Melzack, R., and Eisenberg, H. Skin sensory afterflows. Science 351:445–449, 1968.CrossRefGoogle Scholar
  32. Melzack, R., and Wall, P. D. Pain mechanisms: A new theory. Science 150:971–979, 1965.PubMedCrossRefGoogle Scholar
  33. Nathan, P. W., and Smith, M. C. Clinico-anatomical correlation in anterolateral cordotomy. Adv. Pain Res. Ther. 3:921–926, 1979.Google Scholar
  34. Noordenbos, W. Pain, Elsevier, Amsterdam, 1959.Google Scholar
  35. Noordenbos, W. and Wall, P. D. Diverse sensory functions with an almost totally divided spinal cord. A case of spinal cord transection with preservation of part of one anterolateral quadrant. Pain 2:185–195, 1976.CrossRefGoogle Scholar
  36. Price, D. D. Characteristics of second pain and flexion reflexes indicative of prolonged central summation. Exp. Neurol. 37:371–391, 1972.PubMedCrossRefGoogle Scholar
  37. Price, D. D., and Browe, A. C. Responses of spinal cord neurons to graded noxious and non-noxious stimuli. Exp. Neurol. 48:201–221, 1975.PubMedCrossRefGoogle Scholar
  38. Price, D. D., and Dubner, R. Neurons that subserve the sensory-discriminative aspects of pain. Pain 3:307–338, 1977.PubMedCrossRefGoogle Scholar
  39. Price, D. D., and Mayer, D. J. Neurophysiological characterization of the anterolateral quadrant neurons subserving pain in M. Mulatta. Pain 1:59–72, 1975.PubMedCrossRefGoogle Scholar
  40. Price, D. D., Dubner, R., and Hu, J. W. Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive stimulation of monkey’s face. J. Neurophysiol. 39:936–953, 1976.PubMedGoogle Scholar
  41. Price, D. D., Hu, J. W., Dubner, R., and Gracely, R. H. Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain 3:57–68, 1977.PubMedCrossRefGoogle Scholar
  42. Price, D. D., Hayes, R. L., Ruda, M. A., and Dubner, R. Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensation. J. Neurophysiol. 41:933–947, 1978.PubMedGoogle Scholar
  43. Price, D. D., Hayashi, H., Dubner, R., and Ruda, M. A. Functional relationships between neurons of marginal and substantia gelatinosa layers of primate dorsal horn. J. Neurophysiol. 42:1590–1608, 1979.PubMedGoogle Scholar
  44. Price, D. D., Barrell, J. J., and Gracely, R. H. A psychological analysis of experiential factors that selectively influence the affective dimension of pain. Pain 8:137–150, 1980.PubMedCrossRefGoogle Scholar
  45. Price, D. D., Bushnell, M. C., and Iadarola, M. J. Responses of primary afferents and sacral spinal cord neurons to vaginal probing in the cat. Neurosci. Lett. 26:67–73, 1981.PubMedCrossRefGoogle Scholar
  46. Price, D. D., McGrath, P. A., Rafii, A., and Buckingham, B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 17:45–56, 1983.PubMedCrossRefGoogle Scholar
  47. Wall, P. D. The physiological laminar organization of the dorsal horn. J. Physiol. (Lond.) 188:403–25, 1967.Google Scholar
  48. White, A. R., and Sweet, W. C. Pain and the Neurosurgeon: A Forty Year Experience, Charles C. Thomas, Springfield, IL, 1971, p. 333.Google Scholar
  49. Willis, W. D. Physiology of dorsal horn and spinal cord pathways related to pain, in: Mechanisms of Pain and Analgesia Compounds (R. F. Beers, Jr. and E. G. Bassett, eds.), Raven Press, New York, 1979, pp. 143–156.Google Scholar
  50. Willis, W. D., Kenshalo, D. R., Jr., and Leonard, R. B. The cells of origin of the spinothalamic tract. J. Comp. Neurol. 188:543–574, 1979.PubMedCrossRefGoogle Scholar
  51. Yezierski, R. P., Culberson, J. L., and Brown, P. B. Cells of origin of propriospinal connections to cat lumbosacral grey as determined with horseradish peroxidase. Exp. Neurol. 69:493–512, 1980.PubMedCrossRefGoogle Scholar
  52. Yokota, T., and Nishikawa, Y. Action of picrotoxin upon trigeminal subnucleus caudalis in the monkey. Brain. Res. 171:369–373, 1979.PubMedCrossRefGoogle Scholar
  53. Yokota, T., Nishikawa, N., and Nishikawa, Y. Effects of strychnine upon different classes of trigeminal subnucleus caudalis neurons. Brain Res. 168:430–434, 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Donald D. Price
    • 1
  1. 1.Department of AnesthesiologyMedical College of VirginiaRichmondUSA

Personalised recommendations