Advertisement

Control Systems for Nociceptive Afferent Processing

The Descending Inhibitory Pathways
  • Donna L. Hammond

Abstract

Afferent transmission in the spinal cord is subject to regulation by supra-spinally located neurons. This concept originated with Sherrington and Sow-ton’s (1915) observation that transection of the spinal cord in decerebrate cats enhanced the flexion reflex and was developed further by Lundberg and associates in their studies of flexor reflex afferents (Eccles and Lundberg, 1959; Holmqvist and Lundberg, 1959, 1961). Although these early studies emphasized the effects of descending inhibitory control systems on motor function [see Willis (1982) and Lundberg (1982) for review], later studies demonstrated that this concept also applied to sensory function. Thus, Wall (1967) observed that cold block of the spinal cord in decerebrate cats not only enhanced the spontaneous activity of previously quiescent dorsal horn neurons but also augmented their response to peripheral stimuli. Similar observations were made by other laboratories with the additional finding that the inhibition appeared to be selective for the dorsal horn neurons’ responses to noxious, as opposed to nonnoxious, stimuli (Besson et al., 1975; Handwerker et al., 1975; Duggan et al., 1977a; Soja and Sinclair, 1983).

Keywords

Spinal Cord Dorsal Horn Nucleus Raphe Dorsal Horn Neuron Spinal Trigeminal Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abols, I. A., and Basbaum, A. I. Afferent connections of the rostral medulla of the cat: A neural substrate for midbrain—medullary interactions in the modulation of pain. J. Comp. Neurol. 201:285–297, 1981.PubMedGoogle Scholar
  2. Akaike, A., Shibata, T., Satoh, M., and Takagi, H. Analgesia induced by microinjection of morphine into, and electrical stimulation of, the nucleus reticularis paragigantocellularis of rat medulla oblongata. Neuropharmacology 17:775–778, 1978.PubMedGoogle Scholar
  3. Akil, H., and Mayer, D. J. Antagonism of stimulation-produced analgesia by pCPA, a serotonin synthesis inhibitor. Brain Res. 44:692–697, 1972.PubMedGoogle Scholar
  4. Akil, H., Mayer, D. J., and Liebeskind, J. C. Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191:961–962, 1975.Google Scholar
  5. Andersen, P., Eccles, J. C., and Sears, T. A. Cortically evoked depolarization of primary afferent fibers in the spinal cord. J. Neurophysiol. 27:63–77, 1964.PubMedGoogle Scholar
  6. Anderson, S. D., Basbaum, A. I., and Fields, H. L. Response of medullary raphe neurons to peripheral stimulation and to systemic administration. Brain Res. 123:363–368, 1977.PubMedGoogle Scholar
  7. Andrezik, J. A., Chan-Palay, V., and Palay, S. L. The nucleus paragigantocellularis lateralis in the rat. Conformation and cytology. Anat. Embryol. 161:335–371, 1981.Google Scholar
  8. Applebaum, A. E., Leonard, R. B., Kenshalo, D. R., Jr., Martin, R. F., and Willis, W. D. Nuclei in which functionally identified spinothalamic tract neurons terminate. J. Comp. Neurol. 188:575–586, 1979.PubMedGoogle Scholar
  9. Armand, J. The origin, course and terminations of corticospinal fibers in various mammals. Prog. Brain Res. 57:329–360, 1982.PubMedGoogle Scholar
  10. Basbaum, A. I., and Fields, H. L. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies on the anatomy of pain modulation. J. Comp. Neurol. 187:513–532, 1979.PubMedGoogle Scholar
  11. Basbaum, A. I., Marley, N. J. E., O’keefe, J., and Clanton, C. H. Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions. Pain 3:43–56, 1977.PubMedGoogle Scholar
  12. Basbaum, A. I., Clanton, C. H., and Fields, H. L. Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. J. Comp. Neurol. 178:209–224, 1978.PubMedGoogle Scholar
  13. Beall, J. E., Martin, R. F., Applebaum, A. E., and Willis, W. D. Inhibition of primate spino-thalamic tract neurons by stimulation in the region of the nucleus raphe magnus. Brain Res. 114:328–333, 1976.PubMedGoogle Scholar
  14. Behbehani, M. M., and Fields, H. L. Evidence that an excitatory connection between the periaqueductal gray and nucleus raphe magnus mediates stimulation-produced analgesia. Brain Res. 170:85–93, 1979.PubMedGoogle Scholar
  15. Beitz, A. J. The nuclei of origin of brain stem enkephalin and substance P projections to the rodent nucleus raphe magnus. Neuroscience 7:2753–2768, 1982a.PubMedGoogle Scholar
  16. Beitz, A. J. The sites of origin of brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus. J. Neurosci. 2:829–842, 1982b.PubMedGoogle Scholar
  17. Beitz, A. J. The nuclei of origin of brainstem serotonergic projections to the rodent spinal trigeminal nucleus. Neurosci. Lett. 32:223–228, 1982c.PubMedGoogle Scholar
  18. Beitz, A. J., Wells, W. E., and Shepard, R. D. The location of brainstem neurons which project bilaterally to the spinal trigeminal nuclei as demonstrated by the double fluorescent retrograde tracer technique. Brain Res. 258:305–312, 1983.PubMedGoogle Scholar
  19. Belcher, G., Ryall, R. W., and Schaffner, R. The differential effects of 5-hydroxytryptamine, noradrenaline and raphe stimulation on nociceptive and non-nociceptive dorsal horn inter-neurones in the cat. Brain Res. 151:307–321, 1978.PubMedGoogle Scholar
  20. Bennett, C. J., and Mayer, D. J. Inhibition of spinal cord interneurons by narcotic microinjection and focal electrical stimulation in the periaqueductal central gray matter. Brain Res. 172:243–257, 1979.PubMedGoogle Scholar
  21. Berk, M. L., and Finkelstein, J. A. Efferent connections of the lateral hypothalamic area of the rat: An autoradiographic investigation. Brain Res. Bull. 8:511–526, 1982.PubMedGoogle Scholar
  22. Berman, A. L. The Brain Stem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates, University of Wisconsin Press, Madison, 1968.Google Scholar
  23. Besson, J. M., Guilbaud, G., and Lebars, D. Descending inhibitory influences exerted by the brainstem upon the activities of dorsal horn lamina V cells induced by intra-arterial injection of bradykinin into the limbs. J. Physiol. (Lond.) 248:725–739, 1975.Google Scholar
  24. Black, P., Cianci, S. N., and Markowitz, R. S. Alleviation of pain by hypothalamic stimulation in the monkey. Confin. Neurol. 34:374–381, 1972.Google Scholar
  25. Bobillier, P., Seguin, S., Petitjean, F., Salvert, D., Touret, M., and Jouvet, M. The raphe nuclei of the cat brain stem: A topographical atlas of their efferent projections as revealed by autoradiography. Brain Res. 113:449–186, 1976.PubMedGoogle Scholar
  26. Bourgoin, S., Oliveras, J. L., Bruxelle, J., Hamon, M., and Besson, J. M. Electrical stimulation of the nucleus raphe magnus in the rat. Effects on 5-HT metabolism in the spinal cord. Brain Res. 194:377–389, 1980.PubMedGoogle Scholar
  27. Bowker, R. M., Westlund, K. N., and Coulter, J. D. Serotonergic projections to the spinal cord from the midbrain in the rat: An immunocytochemical and retrograde transport study. Neurosci. Lett. 24:221–226, 1981.PubMedGoogle Scholar
  28. Bowker, R. M., Westlund, K. N., Sullivan, M. C., and Coulter, J. D. Organization of descending serotonergic projections to the spinal cord. Prog. Brain Res. 57:239–265, 1982a.PubMedGoogle Scholar
  29. Bowker, R. M., Westlund, K. N., Sullivan, M. C., Wilber, J. F., and Coulter, J. D. Transmitters of the raphe-spinal complex: Immunocytochemical studies. Peptides 3:291–298, 1982b.PubMedGoogle Scholar
  30. Bowker, R. M., Westlund, K. N., Sullivan, M. C., Wilber, J. F., and Coulter, J. D. Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: A multiple transmitter complex. Brain Res. 288:33–48, 1983.PubMedGoogle Scholar
  31. Brodal, A., Taber, E., and Walberg, F. The raphe nuclei of the brain stem in the cat. II. Efferent connections. J. Camp. Neurol 114:239–259, 1960.Google Scholar
  32. Brodie, M. S., and Proudfit, H. K. Hypoalgesia induced by the local injection of carbachol into the nucleus raphe magnus. Brain Res. 291:337–342, 1984.PubMedGoogle Scholar
  33. Carlton, S. M., Leichnetz, G. R., Young, E. G., and Mayer, D. J. Supramedullary afferents of the nucleus raphe magnus in the rat: A study using the transcannula HRP gel and autoradiographic techniques, J. Comp. Neurol. 214:43–58, 1983.PubMedGoogle Scholar
  34. Carpenter, D., Lundberg, A., and Norrsell, U. Primary afferent depolarization evoked from the sensorimotor cortex. Acta Physiol Scand. 59:126–142, 1963.PubMedGoogle Scholar
  35. Carstens, E. Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by medial hypothalamic stimulation in the cat. J. Neurophysiol. 48:808–822, 1982.PubMedGoogle Scholar
  36. Carstens, E., Klump, D., and Zimmerman, M. The opiate antagonist, naloxone, does not affect descending inhibition from midbrain of nociceptive spinal neuronal discharges in the cat. Neurosci. Lett. 11:323–327, 1979.PubMedGoogle Scholar
  37. Carstens, E., Bihl, H., Irvine, F., and Zimmermann, M. Descending inhibition from medial and lateral midbrain of spinal dorsal horn neuronal responses to noxious and nonnoxious cutaneous stimuli in the cat. J. Neurophysiol. 45:1029–1042, 1981a.PubMedGoogle Scholar
  38. Carstens, E., Fraunhoffer, M., and Zimmerman, M. Serotonergic mediation of descending inhibition from midbrain periaqueductal gray, but not reticular formation, of spinal nociceptive transmission in the cat. Pain 10:149–167, 1981b.PubMedGoogle Scholar
  39. Carstens, E., MacKinnon, J. D., and Guinan, M. J. Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by medial preoptic and septal stimulation in the cat. J. Neurophysiol. 48:981–991, 1982.PubMedGoogle Scholar
  40. Carstens, E., Fraunhoffer, M., and Suberg, S. N. Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by lateral hypothalamus stimulation. J. Neurophysiol. 50:192–204, 1983a.PubMedGoogle Scholar
  41. Carstens, E., MacKinnon, J. D., and Guinan, M. J. Serotonin involvement in descending inhibition of spinal nociceptive transmission produced by stimulation of medial diencephalon and basal forebrain. J. Neurosci. 3:2112–2120, 1983b.PubMedGoogle Scholar
  42. Castiglioni, A. J., Gallaway, M. C., and Coulter, J. D. Spinal projections from the midbrain in monkey. J. Comp. Neurol. 178:329–346, 1978.PubMedGoogle Scholar
  43. Catsman-Berrevoets, C. E., and Kuypers, H. G. J. M. A search for corticospinal collaterals to thalamus and mescencephalon by means of multiple retrograde fluorescent tracers in cat and rat. Brain Res. 218:15–33, 1981.PubMedGoogle Scholar
  44. Chan-Palay, V. Combined immunocytochemistry and autoradiography after in vivo injections of monoclonal antibody to substance P and 3H-serotonin. Anat. Embryol. 156:241–255, 1979.PubMedGoogle Scholar
  45. Conrad, L. C. A., and Pfaff, D. W. Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area. J. Comp. Neurol. 169:185–220, 1976a.PubMedGoogle Scholar
  46. Conrad, L. C. A., and Pfaff, D. W. Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J. Comp. Neurol. 169:221–262, 1976b.PubMedGoogle Scholar
  47. Coulter, J. D., and Jones, E. G. Differential distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey. Brain Res. 129:335–340, 1977.PubMedGoogle Scholar
  48. Coulter, J. D., Maunz, R. A., and Willis, W. D. Effects of stimulation of sensorimotor cortex on primate spinothalamic neurons. Brain Res. 65:351–356, 1974.PubMedGoogle Scholar
  49. Cox, V. C., and Valenstein, E. S. Attenuation of aversive properties of peripheral shock by hypothalamic stimulation. Science 149:323–325, 1965.PubMedGoogle Scholar
  50. Crutcher, K. A., Humbertson, A. D., Jr., and Martin, G. F. The origin of brainstem-spinal pathways in the North American opossum (Didelphis virginiana). Studies using the horseradish peroxidase method. J. Comp. Neurol. 179:169–194, 1978.PubMedGoogle Scholar
  51. Dahlstrom, A., and Fuxe, K. Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of the bulbospinal neuron systems. Acta Physiol. Scand. [Suppl.] 247:1–36, 1965.Google Scholar
  52. Dickenson, A. H., Oliveras, J. L., and Besson, J. M. Role of the nucleus raphe magnus in opiate analgesia as studied by the microinjection technique in the rat. Brain Res. 170:95–111, 1979.PubMedGoogle Scholar
  53. Dostrovsky, J. O., Shah, Y., and Gray, B. G. Descending inhibitory influences from peria-queductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and non-nociceptive neurons. J. Neurophysiol. 49:948–960, 1983.PubMedGoogle Scholar
  54. Duggan, A. W., and Griersmith, B. T. Inhibition of the spinal transmission of nociceptive information by supraspinal stimulation in the cat. Pain 6:149–161, 1979.PubMedGoogle Scholar
  55. Duggan, A. W., and Morton, C. R. Periaqueductal grey stimulation: An association between selective inhibition of dorsal horn neurones and changes in peripheral circulation. Pain 15:237–248, 1983.PubMedGoogle Scholar
  56. Duggan, A. W., Hall, J. G., Headley, P. M., and Griersmith, B. T. The effect of naloxone on the excitation of dorsal horn neurones of the cat by noxious and non-noxious cutaneous stimuli. Brain Res. 138:185–189, 1977a.PubMedGoogle Scholar
  57. Duggan, A. W., Hall, J. G., and Headley, P. M. Enkephalins and dorsal horn neurones of the cat: Effects on responses to noxious and innocuous skin stimuli. Br.J. Pharmacol. 61:399–408, 1977b.PubMedGoogle Scholar
  58. Eccles, R. M., and Lundberg, A. Supraspinal control of interneurons mediating spinal reflexes. J. Physiol. (Lond.) 147:565–584, 1959.Google Scholar
  59. Edeson, R. O., and Ryall, R. W. Systematic mapping of descending inhibitory control by the medulla of nociceptive spinal neurones in cats. Brain Res. 271:251–262, 1983.PubMedGoogle Scholar
  60. Fields, H. L., and Anderson, S. D. Evidence that raphe-spinal neurons mediate opiate and midbrain stimulation-produced analgesia. Pain 5:333–349, 1978.PubMedGoogle Scholar
  61. Fields, H. L., Basbaum, A. I., Clanton, C. H., and Anderson, S. D. Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res. 126:441–53, 1977.PubMedGoogle Scholar
  62. Fifkova, E., and Marsala, J. Stereotaxic atlases for the cat, rabbit and rat, in: Electrophysiological Methods in Biological Research (J. Bures, M. Petran, and J. Zacher, eds.), Academia, Prague, 1967, pp. 653–731.Google Scholar
  63. Finley, J. C. W., Maderdrut, J. L., and Petrusz, P. The immunocytochemical localization of enkephalin in the central nervous system of the rat. J. Comp. Neurol. 198:541–565, 1981.PubMedGoogle Scholar
  64. Frankfurt, M., Lauder, J. M., and Azmitia, E. C. The immunocytochemical localization of serotonergic neurons in the rat hypothalamus. Neurosci. Lett. 24:227–232, 1981.PubMedGoogle Scholar
  65. Gallager, D. W., and Pert, A. Afferents to brain stem nuclei (brain stem raphe, nucleus reticularis pontis caudalis and nucleus gigantocellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxidase. Brain Res. 144:257–275, 1978.PubMedGoogle Scholar
  66. Gerhart, K. D., Wilcox, T. K., Chung, J. M., and Willis, W. D. Inhibition of nociceptive and non-nociceptive responses of primate spinothalamic cells by stimulation in medial brainstem. J. Neurophysiol. 45:121–136, 1981a.PubMedGoogle Scholar
  67. Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., Grossman, A. E., and Willis, W. D. Inhibition of primate spinothalamic tract neurons by stimulation in ipsilateral or contralateral ventral posterior lateral (VPLc) thalamic nucleus. Brain Res. 229:514–519, 1981b.PubMedGoogle Scholar
  68. Gerhart, K. D., Yezierski, R. P., Fang, Z. R., and Willis, W. D. Inhibition of primate spinothalamic tract neurons by stimulation in the ventral posterior lateral (VPLc) thalamic nucleus: Possible mechanisms. J. Neurophysiol. 49:406–423, 1983.PubMedGoogle Scholar
  69. Giesler, G. J., Jr., Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., and Willis, W. D. Post-synaptic inhibition of primate spinothalamic neurons by stimulation in nucleus raphe magnus. Brain Res. 204:184–188, 1981a.PubMedGoogle Scholar
  70. Giesler, G. J., Jr., Yezierski, R. P., Gerhart, K. D., and Willis, W. D. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiologically novel population of spinal cord neurons. J. Neurophysiol. 46:1285–1308, 1981b.PubMedGoogle Scholar
  71. Glazer, F. J., Steinbusch, H., Verhofstad, A., and Basbaum, A. I. Serotonin neurons in nucleus raphe dorsalis and paragigantocellularis of the cat contain enkephalin. J. Physiol. (Paris) 77:241–245, 1981.Google Scholar
  72. Goldstein, A., and Ghazarossian, V. E. Immunoreactive dynorphin in pituitary and brain. Proc. Natl. Acad, Sci. U.S.A. 77:6207–6210, 1980.Google Scholar
  73. Goodman, S. J., and Holcombe, V. Selective and prolonged analgesia in monkey resulting from brain stimulation. Pain Res. Ther. 1:495–502, 1976.Google Scholar
  74. Gray, B. G., and Dostrovsky, J. O. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and non-nociceptive neurons. J. Neurophysiol. 49:932–947, 1983.PubMedGoogle Scholar
  75. Grofova, I., Ottersex, O. P., and Rinvik, E. Mesencephalic and diencephalic afferents to the superior colliculus and periaqueductal gray substance demonstrated by retrograde axonal transport of horseradish peroxidase in the cat. Brain Res. 146:205–220, 1978.PubMedGoogle Scholar
  76. Guilbaud, G., Besson, J. M., Oliveras, J. L., and Liebeskind, J. C. Suppression by LSD of the inhibitory effect exerted by dorsal raphe stimulation on certain spinal cord interneurons in the cat. Brain Res. 61:417–422, 1973.PubMedGoogle Scholar
  77. Guilbaud, G., Oliveras, J. L., Giesler, G., Jr., and Besson, J. M. Effects induced bv stimulation of the centralis inferior nucleus of the raphe on dorsal horn interneurons in cat’s spinal cord. Brain Res. 126:355–360, 1977.PubMedGoogle Scholar
  78. Gybels, J., Vanhees, J., and Peluso, F. Modulation of experimentally produced pain in man by electrical stimulation of some cortical, thalamic and basal ganglia structures. Pain Res. Ther. 1:475–478, 1976.Google Scholar
  79. Haber, L. H., Martin, R. F., Chatt, A. B., and Willis, W. D. Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey. Brain Res. 153:163–168, 1978.PubMedGoogle Scholar
  80. Hagbarth, K.-E., and Kerr, D. I. B. Central influences on spinal afferent conduction. J. Neurophysiol. 17:295–307, 1954.PubMedGoogle Scholar
  81. Haigler, H. J., and Mittleman, R. S. Analgesia produced by direct injection of morphine into the mesencephalic reticular formation. Brain Res. Bull. 3:655–662, 1978.PubMedGoogle Scholar
  82. Hammond, D. L., and Yaksh, T. L. Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine. Brain Res. 298:329–337, 1984.PubMedGoogle Scholar
  83. Hammond, D. L., Levy, R. A., and Proudeit, H. K. Hypoalgesia following microinjection of noradrenergic antagonists in the nucleus raphe magnus. Pain 9:85–101, 1980a.PubMedGoogle Scholar
  84. Hammond, D. L., Levy, R. A., and Proudfit, H. K. Hypoalgesia induced by microinjection of a norepinephrine antagonist in the nucleus raphe magnus: Reversal by intrathecal administration of a serotonin antagonist. Brain Res. 201:475–479, 1980b.PubMedGoogle Scholar
  85. Hammond, D. L., Tyce, G. M., and Yaksh, T. L. Efflux of serotonin and noradrenaline into spinal cord superfusates during stimulation of the rat ventromedial medulla. J. Physiol. (Lond.) 359:151–162, 1985.Google Scholar
  86. Hancock, M. B. Cells of origin of hypothalamo—spinal projections in the rat. Neurosci. Lett. 3:179–184, 1976.PubMedGoogle Scholar
  87. Handwerker, H. O, Iggo, A., and Zimmerman, M. Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain 1:147–165, 1975.PubMedGoogle Scholar
  88. Hayes, N. L., and Rustioni, A. Descending projections from brainstem and sensorimotor cortex to spinal enlargements in the cat. Exp. Brain Res. 41:89–107, 1981.PubMedGoogle Scholar
  89. Hayes, R. L., Newlon, P. G., Rosecraxs, J. A., and Mayer, D. J. Reduction of stimulation-produced analgesia by lysergic acid diethylamide, a depressor of serotonergic neural activity. Brain Res. 122:367–372, 1977.PubMedGoogle Scholar
  90. Hayes, R. L., Price, D. D., Ruda, M., and Dubner, R. Suppression of nociceptive responses in the primate by electrical stimulation of the brain or morphine administration: Behavioral and electrophysiological comparisons. Brain Res. 167:417–421, 1979.PubMedGoogle Scholar
  91. Headley, P. M., Duggan, A. W., and Griersmith, B. T. Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Res. 145:185–189, 1978.PubMedGoogle Scholar
  92. Hökfelt, T., Elde, R., Johansson, D., Terenius, L., and Stein, L. The distribution of en-kephalin-immunoreacitve cell bodies in the rat central nervous system. Neurosci. Lett. 5:25–31, 1977.PubMedGoogle Scholar
  93. Hökfelt, T., Ljungdahl, A., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, E., Pernow, B., and Goldstein, M. Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience 3:517–538, 1978.PubMedGoogle Scholar
  94. Hökfelt, T., Terenius, L., Kuypers, H. G. J. M., and Dann, O. Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord. Neurosci. Lett. 14:55–60, 1979.PubMedGoogle Scholar
  95. Holmqvist, B., and Lundberg, A. On the organization of the supraspinal inhibitory control of interneurons of various spinal reflex arcs. Arch. Ital. Biol. 97:340–356, 1959.Google Scholar
  96. Holmqvist, B., and Lundberg, A. Differential supraspinal control of synaptic actions evoked by volleys in the flexion afferents in alpha motoneurones. Acta Physiol. Scand. [Suppl.] 186:1–51, 1961.Google Scholar
  97. Holstege, G., and Kuypers, H. G. J. M. The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study. Prog. Brain Res. 57:145–175, 1982.PubMedGoogle Scholar
  98. Hongo, T., and Jankowska, E. Effects from the sensorimotor cortex on the spinal cord in cats with transected pyramids. Exp. Brain Res. 3:117–134, 1967.PubMedGoogle Scholar
  99. Hosobuchi, Y., Adams, J. E., and Rutkin, B. Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch. Neurol. 29:158–161, 1973.PubMedGoogle Scholar
  100. Hosobuchi, Y., Adams, J. E., and Linchitz, R. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197:183–186, 1977.PubMedGoogle Scholar
  101. Hosoya, Y. The distribution of spinal projection neurons in the hypothalamus of the rat, studied with the HRP method. Exp. Brain Res. 40:79–87, 1980.PubMedGoogle Scholar
  102. Hosoya, Y., and Matsushita, M. Brainstem projections from the lateral hypothalamic area in the rat, as studied with autoradiography. Neurosci. Lett. 24:111–116, 1981.PubMedGoogle Scholar
  103. Jacquet, Y. F., and Lajtha, A. Paradoxical effects after microinjection of morphine in the periaqueductal gray matter in the rat. Science 185:1055–1057, 1974.PubMedGoogle Scholar
  104. Jensen, T., and Yaksh, T. L. Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brainstem sites. Brain Res. 321:287–297, 1985.Google Scholar
  105. Jordan, L. M., Kenshalo, D. R., Jr., Martin, R. F., Haber, L. H., and Willis, W. D. Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine. Pain 5:135–142, 1978.PubMedGoogle Scholar
  106. Jurna, I. Effect of stimulation in the periaqueductal grey matter on activity in ascending axons of the rat spinal cord: selective inhibition of activity evoked by afferent Aγ and C fibre stimulation and failure of naloxone to reduce inhibition. Brain Res. 196:33–42, 1980.PubMedGoogle Scholar
  107. Kajander, K. C., Ebner, T. J., and Bloedel, J. R. Effects of periaqueductal gray and raphe magnus stimulation on the responses of spinocervical and other ascending projection neurons to non-noxious inputs. Brain Res. 291:29–37, 1984.PubMedGoogle Scholar
  108. Kevetter, G. A., and Willis, W. D. Spinothalamic cells in the rat lumbar cord with collaterals to the medullary reticular formation. Brain Res. 238:181–185, 1982.PubMedGoogle Scholar
  109. Khachaturian, H., Watson, S. J., Lewis, M. E., Coy, D., Goldstein, A., and Akil, H. Dynorphin immunocytochemistry in the cat central nervous system. Peptides 3:941–954, 1982.PubMedGoogle Scholar
  110. Kneisley, L. W., Biber, M. P., and Lavail, J. H. A study of the origin of brain stem projections to monkey spinal cord using the retrograde transport method. Exp. Neurol. 60:116–139, 1978.PubMedGoogle Scholar
  111. Kuraishi, Y., Fukui, K., Shiomi, H., Akaike, A., and Takagi, H. Microinjection of opioids into the nucleus reticularis gigantocellularis of the rat: Analgesia and increase in the normeta-nephrine level in the spinal cord. Biochem. Pharmacol. 27:2756–2758, 1978.PubMedGoogle Scholar
  112. Kuraishi, Y., Harada, Y., and Takagi, H. Noradrenaline regulation of pain-transmission in the spinal cord meidated by α-adrenoceptors. Brain Res. 174:333–336, 1979a.PubMedGoogle Scholar
  113. Kuraishi, Y., Harada, Y., Satoh, M., and Takagi, H. Antagonism by phenoxybenzamine of the analgesic effect of morphine injected into the nucleus reticularis gigantocellularis of the rat. Neuropharmacology 18:107–110, 1979b.PubMedGoogle Scholar
  114. Kuypers, H. G. J. M. Central cortical projections to motor and somatosensory cell groups. Brain 83:161–187, 1960.PubMedGoogle Scholar
  115. Kuypers, H. G. J. M., and Maisky, V. A. Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci. Lett. 1:9–14, 1975.PubMedGoogle Scholar
  116. Kuypers, H. G. J. M., and Maisky, V. A. Funicular trajectories of descending brain stem pathways in cat. Brain Res. 136:159–165, 1977.PubMedGoogle Scholar
  117. Lebars, D., Dickenson, A. H., and Besson, J. M. Microinjection of morphine within nucleus raphe magnus and dorsal horn neurone activities related to nociception in the rat. Brain Res. 189:476–481, 1980.Google Scholar
  118. Leichnetz. G. R., Watkins, L., Griffin, G., Murfin, R., and Mayer, D. J. The projection from nucleus raphe magnus and other brainstem nuclei to the spinal cord in the rat: A study using the HRP blue-reaction. Neurosci. Lett. 8:119–124, 1978.Google Scholar
  119. Lewis, V. A., and Gebhart, G. F. Evaluation of the periaqueductal central gray (PAG) as a morphine-specific locus of action and examination of morphine-induced and stimulation-produced analgesia at coincident PAG loci. Brain Res. 124:283–303, 1977.PubMedGoogle Scholar
  120. Liebeskind, J. C., Guilbaud, G., Besson, J. M., and Oliveras, J.-L. Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: Behavioral observations and inhibitory effects on spinal cord interneurons. Brain Res. 50:441–446, 1973.PubMedGoogle Scholar
  121. Liu, C. N., and Chambers, W. W. An experimental study of the corticospinal system in the monkey (Macaca mulatta). J. Comp. Neurol. 123:257–284, 1964.PubMedGoogle Scholar
  122. Lloyd, D. P. C. The spinal mecahnism of the pyramidal system in cats. J. Neurophysiol. 4:525–546, 1941.Google Scholar
  123. Lopachin, R. M., and Rudy, T. A. The thermoregulatory effects of noradrenaline, serotonin and carbachol injected into the rat spinal subarachnoid space. J. Physiol. (Lond.) 333:511–529, 1982.Google Scholar
  124. Lovick, T. A., and Wolstencroft, J. H. Projections from brain stem nuclei to the spinal trigeminal nucleus in the cat. Neuroscience 9:411–420, 1983.PubMedGoogle Scholar
  125. Lovick, T. A., West, D. C., and Wolstencroft, J. H. Responses of raphespinal and other bulbar raphe neurones to stimulation of the periaqueductal gray in the cat. Neurosci. Lett. 8:45–49, 1978.PubMedGoogle Scholar
  126. Lundberg, A. Inhibitory control from the brain stem of transmission from primary afferents to motoneurons, primary afferent terminals and ascending pathways, in: Brain Stem Control of Spinal Mechanisms (B. Sjolund and A. Bjorklund, eds.) Elsevier, Amsterdam, 1982, pp. 179–224.Google Scholar
  127. Lundberg, A., and Voorhoeve, P. Effects from the pyramidal tract on spinal reflex arcs. Acta Physiol. Scand. 56:201–219, 1962.PubMedGoogle Scholar
  128. Lundberg, A., Norrsell, U., and Voorhoeve, P. Pyramidal effects on lumbo-sacral interneurones activated by somatic afferents. Acta Physiol. Scand. 56:220–229, 1962.PubMedGoogle Scholar
  129. Mantyh, P. W. Connections of midbrain periaqueductal gray in the monkey. II. Descending efferent projections. J. Neurophysiol. 49:582–594, 1983.PubMedGoogle Scholar
  130. Mantyh, P. W., and Hunt, S. P. Evidence for cholecystokinin-like imunoreactive neurons in the rat medulla oblongata which project to the spinal cord. Brain Res. 291:49–54, 1984.PubMedGoogle Scholar
  131. Mantyh, P. W., and Peschanski, M. Spinal projections from the periaqueductal grey and dorsal raphe in the rat, cat and monkey. Neuroscience 7:2769–2776, 1982.PubMedGoogle Scholar
  132. Martin, G. F., Cabana, T., Humbertson, A. O., Jr., Laxson, L. C., and Panneton, W. M. Spinal projections from the medullary reticular formation of the North American opossum: Evidence for connectional heterogeneity. J. Comp. Neurol. 196:663–682, 1981.PubMedGoogle Scholar
  133. Martin, R. F., Jordan, L. M., and Willis, W. D. Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions. J. Comp. Neurol. 182:77–88, 1978.PubMedGoogle Scholar
  134. Mayer, D. J., and Liebeskind, J. C. Pain reduction by focal electrical stimulation of the brain: An anatomical and behavioral analysis. Brain Res. 68:73–93, 1974.PubMedGoogle Scholar
  135. Mazars, G. J., Merienne, L., and Ciolola, C. Comparative study of electrical stimulation of posterior thalamic nuclei, periaqueductal gray, and other midline mesencephalic structures in man. Pain Res. Ther. 3:541–546, 1979.Google Scholar
  136. McCreery, D. B., and Bloedel, J. R. Reduction of the response of cat spinothalamic neurons to graded mechanical stimuli by electrical stimulation of the lower brain stem. Brain Res. 97:151–156, 1975.PubMedGoogle Scholar
  137. McCreery, D. B., Bloedel, J. R., and Hames, E. G. Effects of stimulating in raphe nuclei and in reticular formation on response of spinothalamic neurons to mechanical stimuli. J. Neurophysiol. 42:166–182, 1979.PubMedGoogle Scholar
  138. Meessen, H., and Olszewski, J. A Cytoarchitectonic Atlas of the Rhombencephalon of the Rabbit, S. Karger, Basel, 1949.Google Scholar
  139. Mohrland, J. S., and Gebhart, G. F. Effects of focal electrical stimulation and morphine microinjection in the periaqueductal gray of the rat mesencephalon on neuronal activity in the medullary reticular formation. Brain Res. 201:23–37, 1980.PubMedGoogle Scholar
  140. Moss, M. S., Glazer, E. J., and Basbaum, A. I. The peptidergic organization of the cat periaqueductal gray. I. The distribution of immunoreactive enkephalin-containing neurons and terminals. J. Neurosci. 3:603–616. 1983.PubMedGoogle Scholar
  141. Murray, E. A., and Coulter, J. D., Organization of corticospinal neurons in the monkey. J. Comp. Neurol. 195:339–365, 1981.PubMedGoogle Scholar
  142. Nilaver, G., Zimmerman, E. A., Wilkins, J., Michaels, J., Hoffman, D., and Silverman, A. J. Magnocellular hypothalamic projections to the lower brain stem and spinal cord of the rat. Neuroendocrinology 30:150–158, 1980.PubMedGoogle Scholar
  143. Oleson, T. D., Twombly, D. A., and Liebeskind, J. C. Effects of pain attenuating brain stimulation and morphine on electrical activity in the raphe nuclei of the awake rat. Pain 4:211–230, 1978.PubMedGoogle Scholar
  144. Oleson, T. D., Kirkpatrick, D. B., and Goodman, S. J. Elevation of pain threshold to tooth shock by brain stimulation in primates. Brain Res. 194:79–95, 1980.PubMedGoogle Scholar
  145. Oliveras, J. L., Besson, J. M., Guilbaud, G., and Liebeskind, J. C. Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat. Exp. Brain Res. 20:32–44, 1974.PubMedGoogle Scholar
  146. Oliveras, J. L., Redjemi, F., Guilbaud, G., and Besson, J. M. Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1:139–145, 1975.PubMedGoogle Scholar
  147. Oliveras, J. L., Hosobuchi, Y., Redjemi, F., Guilbaud, G., and Besson, J. M. Opiate antagonist, naloxone, strongly reduces analgesia induced by stimulation of a raphe nucleus (centralis inferior). Brain Res. 120:221–229, 1977.PubMedGoogle Scholar
  148. Oliveras, J. L., Guilbaud, G., and Besson, J. M. A map of serotonergic structures involved in stimulation producing analgesia in unrestrained freely moving cats. Brain Res. 164:317–322, 1979.PubMedGoogle Scholar
  149. Poitras, D., and Parent, A. Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat. J. Comp. Neurol. 179:699–718, 1978.PubMedGoogle Scholar
  150. Pomeroy, S. L., and Behbehani, M. M. Physiological evidence for a projection from periaqueductal gray to nucleus raphe magnus in the rat. Brain Res. 176:143–147, 1979.PubMedGoogle Scholar
  151. Price, D. D., Hayes, R. L., Ruda, M., and Dubner, R. Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. J. Neurophysiol. 41:933–947, 1978.PubMedGoogle Scholar
  152. Prieto, G. J., Cannon, J. T., and Liebeskind, J. C. N. raphe magnus lesions disrupt stimulation-produced analgesia from ventral but not dorsal midbrain areas in the rat. Brain Res. 261:53–57, 1983.PubMedGoogle Scholar
  153. Proudfit, H. K., and Anderson, E. G. Morphine analgesia: Blockade by raphe magnus lesions. Brain Res. 98:612–618, 1975.PubMedGoogle Scholar
  154. Randic, M., and Yu, H. H. Effects of 5-hydroxytryptamine and bradykinin in cat dorsal horn neurones activated by noxious stimuli. Brain Res. 111:197–203, 1976.PubMedGoogle Scholar
  155. Reddy, S. V. R., Maderdrut, J. L., and Yaksh, T. L. Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J. Pharmacol. Exp. Ther. 213:525–533, 1980.PubMedGoogle Scholar
  156. Rhodes, D. L., and Liebeskind, J. C. Analgesia from rostral brain stem stimulation in the rat. Brain Res. 143:521–532,1978.PubMedGoogle Scholar
  157. Richardson, D. E., and Akil, H. Pain reduction by electrical brain stimulation in man. J. Neurosurg. 47:178–183, 1977.PubMedGoogle Scholar
  158. Rivot, J. P., Chaouch, A., and Besson, J. M. The influence of naloxone on the C fiber response of dorsal horn neurons and their inhibitory control by raphe magnus stimulation. Brain Res. 176:355–364, 1979.PubMedGoogle Scholar
  159. Rivot, J. P., Chaouch, A., and Besson, J. M. Nucleus raphe magnus modulation of response of rat dorsal horn neurons to unmyelinated fiber inputs: Partial involvement of serotonergic pathways. J. Neurophysiol. 44:1039–1057, 1980.PubMedGoogle Scholar
  160. Rivot, J. P., Chiang, C. Y., and Besson, J. M. Increase of serotonin metabolism within the dorsal horn of the spinal cord during nucleus raphe magnus stimulation, as revealed by in vivo electrochemical detection. Brain Res. 238:117–126, 1982.PubMedGoogle Scholar
  161. Sagen, J., and Proudfit, H. K. Hypoalgesia induced by blockade of noradrenergic projections to the raphe magnus: Reversal by blockade of noradrenergic projections to the spinal cord. Brain Res. 223:391–396, 1981.PubMedGoogle Scholar
  162. Sagen, J., and Proudfit, H. K. Evidence for pain modulation by pre-and postsynaptic noradrenergic receptors in the medulla oblongata. Brain Res. 331:285–293, 1985.PubMedGoogle Scholar
  163. Sagen, J., and Proudfit, H. K. Effect of intrathecally administered noradrenergic antagonists on nociception in the rat. Brain Res. 310:295–301, 1984.PubMedGoogle Scholar
  164. Sagen, J., Winker, M. A., and Proudfit, H. K. Hypoalgesia induced by the local injection of phentolamine in the nucleus raphe mangus: Blockade by depletion of spinal cord monoamines. Pain 16:253–263, 1983.PubMedGoogle Scholar
  165. Saper, C. B., Loewy, A. D., Swanson, L. W., and Cowan, W. M. Direct hypothalamo-autonomic connections. Brain Res. 117:305–312, 1976.PubMedGoogle Scholar
  166. Sar, M., Stumpf, W. E., Miller, R. J., Chang, K.-J., and Cuatrecasas, P. Immunohistochemical localization of enkephalin in rat brain and spinal cord. J. Comp. Neurol. 182:17–38, 1978.PubMedGoogle Scholar
  167. Satoh, M., Akaike, A., Nakazawa, T., and Takagi, H. Evidence for involvement of separate mechanisms in the production of analgesia by electrical stimulation of the nucleus reticularis paragigantocellularis and nucleus raphe magnus in the rat. Brain Res. 194:525–529, 1980.PubMedGoogle Scholar
  168. Satoh, M., Oku, P., and Akaike, A. Analgesia produced by microinjection of l-glutamate into the rostral ventromedial bulbar nuclei of the rat and its inhibition by intrathecal alpha-adrenergic blocking agents. Brain Res. 261:361–364, 1983.PubMedGoogle Scholar
  169. Sawchenko, P. E., and Swanson, L. W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J. Comp. Neurol. 205:260–272, 1982.PubMedGoogle Scholar
  170. Schmauss, C., Hammond, D. L., Ochi, J. W., and Yaksh, T. L. Pharmacological antagonism of the antinociceptive effects of serotonin in the rat spinal cord. Eur.J. Pharmacol. 90:349–357, 1983.PubMedGoogle Scholar
  171. Schmidek, H. H., Fohanno, D., Ervin, F. R., and Sweet, W. H. Pain threshold alterations by brain stimulation in the monkey. J. Neurosurg. 35:715–722, 1971.PubMedGoogle Scholar
  172. Schofield, S. P. M., and Everitt, B. J. The organization of indoleamine neurons in the brain of the rhesus monkey (Macaca mulatto). J. Comp. Neurol. 197:369–383, 1981.PubMedGoogle Scholar
  173. Sessle, B. J., Hu, J. W., Dubner, R., and Lucier, G. E. Functional properties of neurons in cat trigeminal caudalis (medullary dorsal horn). II. Modulation of responses to noxious and nonnoxious stimuli by periaqueductal gray, nucleus raphe magnus, cerebral cortex and afferent influences, and effect of naloxone. J. Neurophysiol. 45:193–207, 1981.PubMedGoogle Scholar
  174. Shah, Y., and Dostrovsky, J. O. Electrophysiological evidence for a projection of the periaqueductal gray matter to nucleus raphe magnus in cat and rat. Brain Res. 193:534–538, 1980.PubMedGoogle Scholar
  175. Sherrington, C. S., and Sowton, S. C. M. Observations on reflex responses to single break shocks. J. Physiol. (Lond.) 49:331–348, 1915.Google Scholar
  176. Skagerberg, G., Bjorklund, A., Lindvall, O., and Schmidt, R. H. Origin and termination of the diencephalo—spinal dopamine system in the rat. Brain Res. Bull. 9:237–244, 1982.PubMedGoogle Scholar
  177. Skirboll, L., Hökfelt, T., Dockray, G., Rehfeld, J., Brownstein, M., and Cuello, A. C. Evidence for periaqueductal cholecystokinin—substance P neurons projecting to the spinal cord. J. Neurosci. 3:1151–1157, 1983.PubMedGoogle Scholar
  178. Soja, P. J., and Sinclair, J. G. Tonic descending influences on cat spinal cord dorsal horn neurons. Somatosens. Res. 1:83–93, 1983.PubMedGoogle Scholar
  179. Soper, W. Y. Effects of analgesic midbrain stimulation on reflex withdrawal and thermal escape in the rat. J. Comp. Physiol. Psychol. 90:91–101, 1976.PubMedGoogle Scholar
  180. Soper, W. Y., and Melzack, R. Stimulation-produced analgesia: Evidence for somatotopic organization in the midbrain. Brain Res. 251:301–311, 1982.PubMedGoogle Scholar
  181. Steinbusch, H. W. M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals. Neuroscience 6:557–618, 1981.PubMedGoogle Scholar
  182. Swanson, L. W., and Kuypers, H. G. J. M. The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 194:555–570, 1980.PubMedGoogle Scholar
  183. Takagi, H., Doi, T., and Akaike, A. Microinjection of morphine into the medial part of the bulbar reticular formation in rabbit and rat: Inhibitory effects on lamina V cells of spinal dorsal horn and behavioral analgesia, in: Opiates and Endogenous Opioid Peptides (H. W. Kosterlitz, ed.) Elsevier, Amsterdam, 1976, pp. 191–197.Google Scholar
  184. Tohyama, M., Sakai, K., Salvert, D., Touret, M., and Jouvet, M. Spinal projections from the lower brain stem in the cat as demonstrated by the horseradish peroxidase technique. I. Origins of the reticulospinal tracts and their funicular trajectories. Brain Res. 173:383–403, 1979a.PubMedGoogle Scholar
  185. Tohyama, M., Sakai, K., Touret, M., Salvert, D., and Jouvet, M. Spinal projections from the lower brainstem in the cat as demonstrated by the horseradish peroxidase technique. II. Projections from the dorsolateral pontine tegmentum and raphe nuclei. Brain Res. 176:215–231, 1979b.PubMedGoogle Scholar
  186. Tsubokawa, T., Yamamoto, T., Katayama, Y., and Moriyau, N. Clinical results and physiological basis of thalamic relay nucleus stimulation for relief of intractable pain with morphine tolerance. Appl. Neurophysiol. 45:143–155, 1982.PubMedGoogle Scholar
  187. Uhl, G. R., Goodman, R. R. Kuhar, M. J., Childers, S. R., and Snyder, S. H. Immunohisto-chemical mapping of enkephalin containing cell bodies, fibers and nerve terminals in the brain stem of the rat. Brain Res. 166:75–94, 1979.PubMedGoogle Scholar
  188. Urca, G., Nahin, R. L., and Liebeskind, J. C. Glutamate-induced analgesia: Blockade and potentiation by naloxone. Brain Res. 192:523–530, 1980.PubMedGoogle Scholar
  189. Veazey, R. B., Amaral, D. G., and Cowan, W. M. The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J. Comp. Neurol. 207:135–156, 1982.PubMedGoogle Scholar
  190. Vincent, S. R., Hökfelt, T., Christensson, I., and Terenius, L. Dynorphin-immunoreactive neurons in the central nervous system of the rat. Neurosci. Lett. 33:185–190, 1982.PubMedGoogle Scholar
  191. Wall, P. D. The laminar organization of dorsal horn and effects of descending impulses. J. Physiol. (Lond.) 188:403–423, 1967.Google Scholar
  192. Wamsley, J. K., Young, W. S. III, and Kuhar, M. J. Immunohistochemical localization of enkephalin in rat forebrain. Brain Res. 190:153–174, 1980.PubMedGoogle Scholar
  193. Watkins, L. R., Griffin, G., Leichnetz, G. R., and Mayer, D. J. The somatotopic organization of the nucleus raphe magnus and surrounding brain stem structures as revealed by HRP slow-release gels. Brain Res. 181:1–15, 1980.PubMedGoogle Scholar
  194. Watkins, L. R., Griffin, G., Leichnetz, G. R., and Mayer, D. J. Identification and somatotopic organization of nuclei projecting via the dorsolateral funiculus in rats: A retrograde tracing study using HRP slow-release gels. Brain Res. 223:237–255, 1981.PubMedGoogle Scholar
  195. Watson, S. J., Khachaturian, H., Akil, H., Coy, D. H., and Goldstein, A. Comparison of the distribution of dynorphin systems and enkephalin systems in brain. Science 218:1134–1136, 1982.PubMedGoogle Scholar
  196. Wessendorf, M. W., Proudfit, H. K, and Anderson, E. G. The identification of serotonergic neurons in the nucleus raphe magnus by conduction velocity. Brain Res. 214:168–173, 1981.PubMedGoogle Scholar
  197. West, D. C., and Wolstencroff, J. H. Location and conduction velocity of raphe spinal neurones in nucleus raphe magnus and raphe pallidus in the cat. Neurosci. Lett. 5:147–151, 1977.PubMedGoogle Scholar
  198. Westlund, K. N., Bowker, R. M., Ziegler, M. G., and Coulter, J. D. Descending noradrenergic projections and their spinal terminations. Prog. Brain Res. 57:219–238, 1982.PubMedGoogle Scholar
  199. Wiesendanger, M. The pyramidal tract. Recent investigations on its morphology and function. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 61:72–136, 1969.Google Scholar
  200. Wiklund, L., Leger, L., and Persson, M. Monoamine cell distribution in the cat brain stem. A fluorescence histochemical study with quantification of indolaminergic and locus coeruleus cell groups. J. Comp. Neurol. 203:613–647, 1981.PubMedGoogle Scholar
  201. Williams, R. G., and Dockray, G. J. Distribution of enkephalin-related peptides in rat brain: Immunohistochemical studies using antisera to met-enkephalin and met-enkephalin Arg6Phe7. Neuroscience 9:563–586, 1983.PubMedGoogle Scholar
  202. Willis, W. D. Control of nociceptive transmission in the spinal cord, in: Progress in Sensory Physiology, Vol. 3 (H. Autrum, D. Ottoson, E. R. Perl, and R. F. Schmidt, eds.), Springer-Verlag, New York, 1982, pp. 54–75.Google Scholar
  203. Willis, W. D., Haber, L. H., and Martin, R. F. Inhibition of spinothalamic tract cells and interneurons by brain stem stimulation in the monkey. J. Neurophysiol. 40:968–981, 1977.PubMedGoogle Scholar
  204. Wise, S. P., and Jones, E. G. Cells of origin and terminal distribution of decending projections of the rat somatic sensory cortex. J. Comp. Neurol. 175:129–158, 1977.PubMedGoogle Scholar
  205. Wise, S. P., Murray, E. A., and Coulter, J. D. Somatotopic organization of corticospinal and corticotrigeminal neurons in the rat. Neuroscience 4:65–78, 1979.PubMedGoogle Scholar
  206. Yaksh, T. L. Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res. 160:180–185, 1979.PubMedGoogle Scholar
  207. Yaksh, T. L., and Elde, R. E. Factors governing the release of methionine enkephalin-like immunoreactivity from the mesencephalon and spinal cord of the cat in vivo. J. Neurophysiol. 46:1056–1075, 1981.PubMedGoogle Scholar
  208. Yaksh, T. L., and Hammond, D. L. Peripheral and central substrates involved in the rostrad transmission of nociceptive information. Pain 13:1–85, 1982.PubMedGoogle Scholar
  209. Yaksh, T. L., and Rudy, T. A. Chronic catheterization of the spinal subarachnoid space. Physiol. Behav. 17:1031–1036, 1976.PubMedGoogle Scholar
  210. Yaksh, T. L., and Rudy, T. A. Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4:299–359, 1978.PubMedGoogle Scholar
  211. Yaksh, T. L., and Tyce, G. M. Microinjection of morphine into the periaqueductal gray evokes the release of serotonin from spinal cord. Brain Res. 171:176–181, 1979.PubMedGoogle Scholar
  212. Yaksh, T. L., and Tyce, G. M. Monoamine release from cat spinal cord by somatic stimuli: An intrinsic modulatory system. J. Physiol. (Lond.) 314:513–529, 1981.Google Scholar
  213. Yaksh, T. L., and Wilson, P. R. Spinal serotonin terminal system mediates antinociception. J. Pharmacol. Exp. Ther. 208:446–453,1979.PubMedGoogle Scholar
  214. Yaksh, T. L., Duchateau, J. C., and Rudy, T. A. Antagonism by methysergide and cinanserin of the antinociceptive action of morphine administered into the periaqueductal gray. Brain Res. 104:367–372, 1976a.PubMedGoogle Scholar
  215. Yaksh, T. L., Yeung, J. C., and Rudy, T. A. An inability to antagonize with naloxone the elevated thresholds resulting from electrical stimulation of the mesencephalic central gray. Life Sci. 18:1193–1198, 1976b.PubMedGoogle Scholar
  216. Yaksh, T. L., Yeung, J. C., and Rudy, T. A. Systematic examination in the rat of brain sites sensitive to the direct application of morphine: Observation of differential effects within the periaqueductal gray. Brain Res. 114:83–103, 1976c.PubMedGoogle Scholar
  217. Yaksh, T. L., Huang, S. P., and Rudy, T. A. The direct and specific opiate-like effect of met5 enkephalin and analogues on the spinal cord. Neuroscience 2:593–598, 1977.PubMedGoogle Scholar
  218. Yezierski, R. P., Bowker, R. M., Kevetter, G. A., Westlund, K. N. Coulter, J. D., and Willis, W. D. Serotonergic projections to the caudal brainstem: A double label study using horse-radish peroxidase and serotonin immunoreactivity. Brain Res. 239:258–264, 1982a.PubMedGoogle Scholar
  219. Yezierski, R. P., Wilcox, T. K., and Willis, W. D. The effects of serotonin antagonists on the inhibition of primate spinothalamic tract cells produced by stimulation in nucleus raphe magnus or periaqueductal gray. J. Pharmacol. Exp. Ther. 220:266–277, 1982b.PubMedGoogle Scholar
  220. Yezierski, R. P., Gerhart, K. D., Schrock, B. J., and Willis, W. D. A further examination of effects of cortical stimulation on primate spinothalamic tract cells. J. Neurophysiol. 49:424–441, 1983.PubMedGoogle Scholar
  221. Yunger, L. M., Harvey, J. A., and Lorens, S. A. Dissociation of the analgesic and rewarding effects of brain stimulation in the rat. Physiol. Behav. 10:909–913, 1973.PubMedGoogle Scholar
  222. Zieglgansberger, W., and Tulloch, I. F. The effects of methionine-and leucine-enkephalin on spinal neurones of the cat. Brain Res. 167:53–64, 1979.PubMedGoogle Scholar
  223. Zorman, G., Hentall, I. D., Adams, J. E., and Fields, H. L. Naloxone-reversible analgesia produced by microstimulation in the rat medulla. Brain Res. 219:137–148, 1981.PubMedGoogle Scholar
  224. Zorman, G., Belcher, G., Adams, J. E., and Fields, H. L. Lumbar intrathecal naloxone blocks analgesia produced by microstimulation of the ventromedial medulla in the rat. Brain Res. 236:77–84, 1982.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Donna L. Hammond
    • 1
  1. 1.Department of Biological Research, Research and Development DivisionG.D. Searle and Co.SkokieUSA

Personalised recommendations