Sensory-Discriminative Capacities of Nociceptive Pathways and Their Modulation by Behavior

  • Ronald Dubner
  • M. Catherine Bushnell
  • Gary H. Duncan


Considerable progress has been made on the characterization of neural pathways participating in the sensory component of pain sensations. The sensory component of pain refers to the quality as well as the location, intensity, and temporal aspects of noxious or tissue-damaging stimuli. Recent advances include knowledge about the coding of pain signals and how these signals can be modified by control systems originating at other brain sites.


Dorsal Horn Spinal Dorsal Horn Nociceptive Neuron Noxious Heat Nociceptive Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adriaensen, H., Gybels, J., Handwerker, H. O., and van Hees, J. Response properties of thin myelinated (A-delta) fibers in human skin nerves. J. Neurophysiol. 49:111–122, 1983.PubMedGoogle Scholar
  2. Basbaum, A. I., and Fields, H. L. Endogenous pain control mechanisms: Review and hypothesis. Ann. Neurol 4:451–462, 1978.PubMedCrossRefGoogle Scholar
  3. Beitel, R. E., and Dubner, R. Response of unmyelinated (C) polymodal nociceptors to thermal stimuli applied to monkey’s face. J. Neurophysiol. 39:1160–1175, 1976.PubMedGoogle Scholar
  4. Burgess, P. R., and Perl, E. R. Cutaneous mechanoreceptors and nociceptors, in: Handbook of Sensory Physiology, Somatosensory System, Vol. 2 (A. Iggo, ed.), Springer, Heidelberg, 1973, pp. 29–78.CrossRefGoogle Scholar
  5. Bushnell, M. C., Jones, R. L., Duncan, G. H., and Dubner, R. Effects of attention on detection of noxious and innocuous thermal stimuli. Soc. Neurosci. Abstr. 9:473, 1983a.Google Scholar
  6. Bushnell, M. C., Taylor, M. B., Duncan, G. H., and Dubner, R. Discrimination of innocuous and noxious thermal stimuli applied to the face in human and monkey. Somatosens. Res. 1:119–129, 1983b.PubMedCrossRefGoogle Scholar
  7. Bushnell, M. C., Duncan, G. H., Dubner, R., and He, L. F. Activity of trigeminothalamic neurons in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. J. Neurophysiol. 52:170–187, 1984.PubMedGoogle Scholar
  8. Dubner, R., and Bennett, G. J. Spinal and trigeminal mechanisms of nociception. Annu. Rev. Neurosci. 6:381–418, 1983.PubMedCrossRefGoogle Scholar
  9. Dubner, R., and Hu, J. W. Myelinated (A-delta) nociceptive afferent innervating the monkey’s face. J. Dent. Res. 56:A167, 1977.Google Scholar
  10. Dubner, R., Beitel, R. E., and Brown, F. J. A behavioral animal model for the study of pain mechanisms in primates, in: Pain: New Perspectives in Therapy and Research, (M. Weisenberg and B. Tursky, eds.), Plenum Press, New York, 1976, pp. 155–170.Google Scholar
  11. Dubner, R., Price, D. D., Beitel, R. E., and Hu, J. W. Peripheral neural correlates of behavior in monkey and human related to sensory-discriminative aspects of pain, in: Pain in the Trigeminal Region (D.J. Anderson and B. Matthews, eds.), Elsevier, Amsterdam, 1977, pp. 57–66.Google Scholar
  12. Dubner, R., Sessle, B. J., and Storey, A. T. The Neural Basis of Oral and Facial Function, Plenum Press, New York, 1978.CrossRefGoogle Scholar
  13. Dubner, R., Hoffman, D. S., and Hayes, R. L. Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. III. Task-related responses and their functional role. J. Neurophysiol. 46:444–464, 1981.PubMedGoogle Scholar
  14. Dubner, R., Bushnell, M. C., and Duncan, G. H. Behavioral and neural correlates of nociception, in: Current Topics in Pain Research and Therapy (T. Yokota and R. Dubner, eds.), Excerpta Medica, Amsterdam, 1983, pp. 45–55.Google Scholar
  15. Handwerker, H. O., Keck, F. S. and Neermann, G. Detection of temperature increases in the operating range of warm receptors and of nociceptors. Pain 14:11–20, 1982.PubMedCrossRefGoogle Scholar
  16. Hayes, R. L., Dubner, R., and Hoffman, D. S. Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. II. Behavioral modulation of responses to thermal and mechanical stimuli. J. Neurophysiol. 46:428–443, 1981.PubMedGoogle Scholar
  17. Hoffman, D. S., Dubner, R., Hayes, R. L., and Medlin, T. P. Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. I. Responses to innocuous and noxious thermal stimuli. J. Neurophysiol. 46:409–427, 1981.PubMedGoogle Scholar
  18. Kosterlitz, H. W. Opioid peptides and pain—an update. Adv. Pain Res. Ther. 5:199–208, 1983.Google Scholar
  19. LaMotte, R. H., and Campbell, J. N. Comparison of responses of warm and nociceptive C-fiber afferents in monkey with human judgements of thermal pain. J. Neurophysiol. 41:509–528, 1978.PubMedGoogle Scholar
  20. Maixner, W., Bushnell, M. C., Oliveras, J. L., Duncan, G. H., and Dubner, R. Thermal medullary dorsal horn neurons encode sensory intensity information in the noxious range. Pain [Suppl.] 2:5127, 1984.Google Scholar
  21. Mayer, D. J., and Price, D. D. Central nervous system mechanisms of analgesia. Pain 2:379–404, 1976.PubMedCrossRefGoogle Scholar
  22. Melzack, R. The Puzzle of Pain, Basic Books, New York, 1973.Google Scholar
  23. Perl, E. R. IS pain a specific sensation? J. Psychiatr. Res. 8:273–387, 1971.PubMedCrossRefGoogle Scholar
  24. Price, D. D., and Dubner, R. Neurons that subserve the sensory-discriminative aspects of pain. Pain 3:307–338, 1977.PubMedCrossRefGoogle Scholar
  25. Price, D. D., Hu J. W., Dubner, R., and Gracely, R. H. Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain 3:57–68, 1977.PubMedCrossRefGoogle Scholar
  26. Robinson, C. J., Torebjörk, H. E., and LaMotte, R. H. Psychophysical detection and pain ratings of incremental thermal stimuli: A comparison with nociceptor responses in humans. Brain Res. 274:87–106, 1983.PubMedCrossRefGoogle Scholar
  27. Sherman, J. E., and Liebeskind, J. C. An endorphinergic, centrifugal substrate of pain modulation: recent findings, current concepts, and complexities, in: Pain (J.J. Bonica, ed.), Raven Press, New York, 1980, pp. 191–204.Google Scholar
  28. Sumino, R., Dubner, R., and Starkman, S. Responses of small myelinated ‘warm’ fibers to noxious heat stimuli applied to the monkey’s face. Brain Res. 62:260–263, 1973.PubMedCrossRefGoogle Scholar
  29. Willis, W. D. Control of nociceptive transmission in the spinal cord, in: Progress in Sensory Physiology (D. Ottoson, ed.), Springer-Verlag, Heidelberg, 1982, pp. 1–159.Google Scholar
  30. Willis, W. D., and Coggeshall, R. E. Sensory Mechanisms of the Spinal Cord. Plenum Press, New York, 1978.Google Scholar
  31. Yaksh, T. L., and Rudy, T. A. Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4:299–359, 1978.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Ronald Dubner
    • 1
  • M. Catherine Bushnell
    • 1
  • Gary H. Duncan
    • 1
  1. 1.Neurobiology and Anesthesiology BranchNational Institute of Dental Research, National Institutes of HealthBethesdaUSA

Personalised recommendations