The Spinal Pathways Contributing to the Ascending Conduction and the Descending Modulation of Pain Sensations and Reactions

  • Charles J. VierckJr.
  • Joel D. Greenspan
  • Louis A. Ritz
  • David C. Yeomans


Recent advances in pain research have strongly implicated a variety of transmitters within the dorsal horn of the spinal cord as modulators of conduction from peripheral nociceptors to ascending pathways (see Hammond, Chapter 15; Ruda, Chapter 7; Yaksh, Chapter 8; and several recent reviews including: Basbaum and Fields, 1984; La Motte and de Lanerolle, 1983; Light et ai, 1983; Schmauss and Yaksh, 1984; Westlund et al., 1984). These findings have supplemented and refined a wealth of anatomic and physiological information on synaptic interactions within the dorsal horn that are relevant to pain coding (see Willis, Chapter 11; Cervero, Chapter 9). The weakest link in this intense effort to understand the totality of influences on pain transmission within the spinal cord (Kerr, 1975b) has been the behavioral analysis of pain sensitivity in human patients and laboratory animals (primarily rats, cats, and monkeys).


Dorsal Horn Pain Sensitivity Dorsal Column Spinothalamic Tract Electrocutaneous Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albe-Fessard, D., Levante, A., and Lamour, Y. Origin of spino-thalamic tract in monkeys. Brain Res. 65:503–509, 1974.PubMedCrossRefGoogle Scholar
  2. Amromin, G. D., and Crue, B. L., Jr. Pathological specimens from cases undergoing posterior approach percutaneous stereotactic radiofrequency cervical cordotomy, in: Pain Research and Treatment (B. L. Crue, Jr., ed.), Academic Press, New York, 1975, pp. 213–225.Google Scholar
  3. Andersson, S. A., Norrsell, K., and Norsell, U. Spinal pathways projecting to the cerebral first somatosensory area in the monkey. J. Physiol (Lond.) 225:589–597, 1972.Google Scholar
  4. Applebaum, A. E., Beall, J. E., Foreman, R. D., and Willis, W. D. Organization and receptive fields of primate spinothalamic tract neurons. J. Neurophysiol. 38:572–586, 1975.PubMedGoogle Scholar
  5. Arthur, R. P., and Shelley, W. B. The peripheral mechanisms of itch in man, in: Pain and Itch (G. E. W. Wolstenholme and M. O’connor eds.), American Physiological Society, Washington, 1959, pp. 84–97.Google Scholar
  6. Barilari, M. G., and Kuypers, H. G. J. M. Propriospinal fibers interconnecting the spinal enlargements in the cat. Brain Res. 14:321–330, 1969.CrossRefGoogle Scholar
  7. Basbaum, A. I. Conduction of the effects of nocious stimulation by short-fiber multisynaptic systems of the spinal cord in the rat. Exp. Neurol. 40:699–716, 1973.PubMedCrossRefGoogle Scholar
  8. Basbaum, A. I., and Fields, H. L. Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Anna. Rev. Neurosci. 7:309–338, 1984.CrossRefGoogle Scholar
  9. Basbaum, A. I., Clanton, C. H., and Fields, H. L. Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. J. Comp. Neurol. 178:2109–2224, 1978.CrossRefGoogle Scholar
  10. Bekesy, G. von. Lateral inhibition of heat sensations on the skin. J. Appl. Physiol. 17:1003–1008, 1962.Google Scholar
  11. Berkley, K. J. Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J. Comp. Neurol. 193:283–317, 1980.PubMedCrossRefGoogle Scholar
  12. Berkley, K. J. Projections to the diencephalon arising from limbs, trunk and viscera, in: Diencephalic Mechanisms of Pain Sensations (D. Albe-Fessard, K. J. Berkley, L. Kruger, K. J. Ralston, III, and W. D. Willis, eds.), Brain Res. Rev., vol. 9. pp. 217-296, 1985.Google Scholar
  13. Bickford, R. G. Experiments relating to the itch sensation, its peripheral mechanism, and central pathways. Clin. Sci. 3:377–386, 1938.Google Scholar
  14. Birkinfeld, R., and Fisher, R. G. Successful treatment of causalgia of upper extremity with medullary spinothalamic tractotomy. Case report and review of the literature. J. Neurosurg. 20:303–311, 1963.CrossRefGoogle Scholar
  15. Boivie, J. An anatomical reinvestigation of the termination of the spinothalamic tract in the monkeys. J. Comp. Neurol. 186:343–369, 1979.PubMedCrossRefGoogle Scholar
  16. Bowsher, D. Termination of the central pain pathway in man: The conscious appreciation of pain. Brain 80:606–622, 1957.PubMedCrossRefGoogle Scholar
  17. Bowsher, D. Pain pathways and mechanisms, in: Relief of Intractable Pain (M. Swerdlow, ed.), Elsevier, Amsterdam, 1983, pp. 1–23.Google Scholar
  18. Breazile, J. E., and Kitchell, R. L. A study of fiber systems within the spinal cord of the domestic pig that subserve pain. J. Comp. Neurol. 133:373–382, 1968.PubMedCrossRefGoogle Scholar
  19. Broager, B. Commissural myelotomy. Surg. Neurol. 2:71–74, 1974.PubMedGoogle Scholar
  20. Browder, J. and Gallagher, J. P. Dorsal cordotomy for painful phantom limb. Ann. Surg. 128:456–469, 1948.PubMedCrossRefGoogle Scholar
  21. Brown, A. G. Organization in the Spinal Cord, Springer-Verlag, New York, 1981.CrossRefGoogle Scholar
  22. Brown, P. B. and Fuchs, J. L. Somatotopic representation of hindlimb skin in cat dorsal horn. J. Neurophysiol. 38:1–9, 1975.PubMedGoogle Scholar
  23. Brown-Sequard, E. Lectures on the physiology and pathology of the nervous system. Lancet 2:593–596, 755-757, 821-823, 1868.CrossRefGoogle Scholar
  24. Bryan, R. N., Coulter, J. D., and Willis, W. D. Cells of origin of the spinocervical tract in the monkey. Exp. Neurol. 42:574–586, 1974.PubMedCrossRefGoogle Scholar
  25. Bumke, O., and Foerster, O. Handbuch der Neurologie, Springer-Verlag, Berlin, 1936.Google Scholar
  26. Burgess, P. R., and Perl, E. R. Cutaneous mechanoreceptors and nociceptors, in: Handbook of Sensory Physiology, Somatosensory System, Vol. II (A. Iggo, ed.), Springer-Verlag, Berlin, 1973, pp. 29–79.CrossRefGoogle Scholar
  27. Burton, H., and Loewy, A. D. Projections to the spinal cord from medullary somatosensory relay nuclei. J. Comp. Neurol. 173:773–792, 1977.PubMedCrossRefGoogle Scholar
  28. Cain, W. S. Spatial discrimination of cutaneous warmth. Am. J. Psychol. 86:169–181, 1973.PubMedCrossRefGoogle Scholar
  29. Carpenter, M. G., Stein, B. M., and Shriver, J. E. Central projections of spinal dorsal roots in the monkey II. Lower Thoracic, lumbosacral and coccygeal dorsal roots. Am. J. Anat. 123:75–118, 1968.PubMedCrossRefGoogle Scholar
  30. Casey, K. L., and Morrow, T.J. Supraspinal pain mechanisms in the cat, in: Animal Pain Perception and Alleviation (R. L. Kitchell and H. H. Erickson, eds.), American Physiological Society, Bethesda, 1983, pp. 63–82.CrossRefGoogle Scholar
  31. Casey, K. L, Hall, B. R, and Morrow, T. J. Effect of Spinal cord lesions on responses of cats to thermal pulses. Pain (Suppl. l):S130, 1981.CrossRefGoogle Scholar
  32. Cassinari, V., and Pagni, C. A. Central Pain: A Neurosurgical Survey, Harvard University Press, Cambridge, 1969.Google Scholar
  33. Chung, J. M., Kenshalo, D. R., Gerhart, K. D., and Willis, W. D. Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys. J. Neurophysiol. 42:1354–1369, 1979.PubMedGoogle Scholar
  34. Chung, J. M., Kevetter, G. A., Willis, W. D., and Coggeshall, R. E. An estimate of the ratio of propriospinal to long tract neurons in the sacral spinal cord of the rat. Neurosci. Lett. 44:173–177, 1984.PubMedCrossRefGoogle Scholar
  35. Collins, W. F., Nulsen, F. E., and Randt, C. T. Relation of peripheral nerve fibre size and sensation in man. Arch. Neurol. 3:381–385, 1960.PubMedCrossRefGoogle Scholar
  36. Cook, A. W., and Kawakami, Y. Commissural myelotomy. J. Neurosurg. 47:1–6, 1977.PubMedCrossRefGoogle Scholar
  37. Cook, A. W., Nathan, P. W., and Smith, M. C. Sensory consequences of commissural myelotomy. Brain 107:547–568, 1984.PubMedCrossRefGoogle Scholar
  38. Crutcher, K. A., and Bingham, W. G. Descending monoaminergic pathways in the primate spinal cord. Am. J. Anat. 153:159–164, 1978.PubMedCrossRefGoogle Scholar
  39. Culberson, J. L., and Brown, P. B. Projections of hindlimb dorsal roots to lumbosacral spinal cord of cat. J. Neurophysiol. 51:516–528, 1984.PubMedGoogle Scholar
  40. Davis, L. E., Hart, J. T., and Crain, R. C. The pathway for visceral afferent impulses within the spinal cord. II. Experimental dilatation of the biliary ducts. Surg. Gynecol. Obstet. 48:647–651, 1929.Google Scholar
  41. Denny-Brown, D. The enigma of crossed sensory loss with cord hemisection. Adv. Pain Res. Ther. 3:889–895, 1979.Google Scholar
  42. Drake, C. G., and McKkenzie, K. G. Mesencephalic tractotomy for pain. Experience with six cases. J. Neurosurg. 10:457–462, 1953.PubMedCrossRefGoogle Scholar
  43. Falconer, M. A. Relief of phantom pain by cordotomy, in: Pain (R. S. Knighton and P. R. Dumke, eds.), Little, Brown, Boston; 1966, p. 273–278.Google Scholar
  44. Fields, H. L., Clanton, C. H., and Andersdon, S. D. Somatosensory properties of spinoreticular neurons in the cat. Brain Res. 120:49–66, 1977.PubMedCrossRefGoogle Scholar
  45. Foerster, O., and Gagel, O. Die Vordersetienstrangdurchschneidung beim Menshen. Z. Ges. Neurol. Psychiatrie 138:1–92, 1932.CrossRefGoogle Scholar
  46. Foreman, R. D., Applebaum, A. E., Beall, J. E., Trevino, D. L., and Willis, W. D. Responses of primate spinothalamic tract neurons to electrical stimulation of hindlimb peripheral nerves. J. Neurophysiol. 38:132–145, 1975.PubMedGoogle Scholar
  47. Foreman, R. D., Schmidt, R. F., and Willis, W. D. Convergence of muscle and cutaneous input onto primate spinothalamic tract neurons. Brain Res. 124:555–560, 1977.PubMedCrossRefGoogle Scholar
  48. Foreman, R. D., Hancock, M. B., and Willis, W. D. Responses of spinothalamic tract cells in the thoracic spinal cord of the monkey to cutaneous and visceral inputs. Pain 11:149–162, 1981.PubMedCrossRefGoogle Scholar
  49. French, L. A., and Peyton, W. T. Ipsilateral sensory loss following cordotomy. J. Neurosurg. 5:403–404, 1948.PubMedCrossRefGoogle Scholar
  50. French, L. A., Chou, S. N., and Story, J. L. Cervical tractotomy: Technique and clinical usefulness, in: Pain (R. S. Knighton and P. R. Dumke, eds.), Little, Brown, Boston, 1966, pp. 311–320.Google Scholar
  51. Gardner, E., and Cuneo, H. M. Lateral spinothalamic tract and associated tracts in man. Arch. Neurol Psychiatry 53:423–430, 1945.CrossRefGoogle Scholar
  52. Giesler, G. J., Jr., Menetrey, D., and Basbaum, A. I. Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. J. Comp. Neurol. 184:107–126, 1979.PubMedCrossRefGoogle Scholar
  53. Giesler, G. J., Yezierski, R. P., Gerhart, K. D., and Willis, W. D. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiologically novel population of spinal cord neurons. J. Neurophysiol. 46:1285–1308, 1981.PubMedGoogle Scholar
  54. Graf, C. J. Consideration in loss of sensory level after bilateral cervical cordotomy. Arch. Neurol. 3:410–415, 1960.CrossRefGoogle Scholar
  55. Grant, F. C., and Wood, F. A. Experience with chordotomy. Clin. Neurosurg. 5:38–64, 1958.Google Scholar
  56. Greenspan, J. D., Ritz, L. A., and Vierck, C. J., Jr. Relationship between locus of chordotomy and time-course of hyporeactivity to noxious stimulation in monkeys. Soc. Neurosci. Abstr. 8:264, 1982.Google Scholar
  57. Hancock, M. B., Foreman, R. D., and Willis, W. D. Viscerosomatic interactions in lumbar spinal cord of the cat. J. Neurophysiol. 47:240–248, 1975.Google Scholar
  58. Head, H., and Thompson, T. The grouping of afferent impulses within the spinal cord. Brain 29: 537–741, 1906.CrossRefGoogle Scholar
  59. Hitchcock, E. Stereotactic cervical myelotomy. J. Neurol. Neurosurg. Psychiatry 33:224–230, 1970.PubMedCrossRefGoogle Scholar
  60. Hitchcock, E. Stereotactic myelotomy. Proc. R. Soc. Med. 67:771–772, 1974.PubMedGoogle Scholar
  61. Hodge, C. J., Apkarian, A. V., Stevens, R., Vogilsang, G., and Wisnicki, H.J. Locus coeruleus modulation of dorsal horn unit responses to cutaneous stimulation. Brain Res. 204:415–120, 1981.PubMedCrossRefGoogle Scholar
  62. Honda, C. Convergence of visceral and somatic afferent covergence onto neurons near the central canal in the sacral spinal cord of the cat. J. Neurophysiol. 53:1059–1078, 1985.PubMedGoogle Scholar
  63. Honda, C., and Perl, E. R. Functional and morphological features of neurons in the midline region of the caudal spinal cord of the cat. Brain Res. (in press), 1985.Google Scholar
  64. Horrax, G. Experiences with chordotomy. Arch. Surg. 18:1140–1164, 1929.CrossRefGoogle Scholar
  65. Horrax, G., and Price, W. T., Jr. High cervical chordotomy for relief of intractable pain in the arm, shoulder and upper chest. Ann. Surg. 139:567–585, 1954.PubMedCrossRefGoogle Scholar
  66. Hyndman, O. R. Lissauer’s tract section; a contribution to chordotomy for the relief of pain. J. Int. Coll. Surg. 5:394–400, 1942.Google Scholar
  67. Hyndman, O. R., and van Epps, C. Possibility of differential section of the spinothalamic tract. Arch. Surg. 38:1036–1053, 1939.CrossRefGoogle Scholar
  68. Hyndman, O. R., and Wolkin, J. Anterior chordotomy. Arch. Neurol Psychiatry 50:129–148, 1943.CrossRefGoogle Scholar
  69. Iggo, A. Cutaneous receptors, in: The Peripheral Nervous System, Vol. 4 (J. I. Hubbard, ed.), Plenum Press, New York, 1974, pp. 347–404.CrossRefGoogle Scholar
  70. Jones, E. G. The thalamus, in: Chemical Neuroanatomy (P. C. Emson, ed.), Raven Press, New York, 1983, pp. 257–293.Google Scholar
  71. Jurgens, U., and Pratt, R. J. Role of the periaqueductal grey in vocal expression of emotion. Brain Res. 167:367–378, 1979.PubMedCrossRefGoogle Scholar
  72. Kahn, E. A., and Barney, B. F. Anterolateral chordotomy for intractable pain of tabes dorsalis. Arch. Neurol. Psychiatry 38:467–472, 1937.CrossRefGoogle Scholar
  73. Kahn, E. A., and Rand, R. W. On the anatomy of anterolateral cordotomy. J. Neurosurg. 9:611–619, 1952.PubMedCrossRefGoogle Scholar
  74. Karplus, J. P., and Kreidel, A. Ein Beitrag zur Kenntnis der Schmerzleitung im Ruckenmark. II. Mitteilung. Pflugers Arch. Ges. Physiol 2107:134–139, 1925.Google Scholar
  75. Kelly, D. D., and Glusman, M. Aversive thresholds following midbrain lesions. J. Comp. Physiol. Psychol. 66:25–34, 1968.PubMedCrossRefGoogle Scholar
  76. Kennard, M. A. The course of ascending fibers in the spinal cord of the cat essential to the recognition of painful stimuli. J. Comp. Neurol. 100:511–524, 1954.PubMedCrossRefGoogle Scholar
  77. Kerr, F. W. L. The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J. Comp. Neurol. 159:335–357, 1975a.PubMedCrossRefGoogle Scholar
  78. Kerr, F. W. L. Pain, a new central inhibitory balance theory. Mayo Clin. Proc. 50:685–690, 1975b.PubMedGoogle Scholar
  79. Kerr, F. W. L. Neuroanatomical substrates of nociception in the spinal cord. Pain 1:325–356, 1975c.PubMedCrossRefGoogle Scholar
  80. Kerr, F. W. L., and Lippman, H. H. The primate spinothalamic tract as demonstrated by anterolateral cordotomy and commissural myelotomy. Adv. Neurol. 4:147–156, 1974.Google Scholar
  81. Kevetter, G. A., Haber, L. H., Yezierski, R. P. Chung, J. M., Martin, R. F., and Willis, W. W. Cells of origin of the spinoreticular tract in the monkey. J. Comp. Neurol. 207:61–74, 1982.PubMedCrossRefGoogle Scholar
  82. King, R. B. Postchordotomy studies of pain threshold. Neurology (Minneap.) 7:610–614, 1957.CrossRefGoogle Scholar
  83. King, R. B. Anterior commissurotomy for intractable pain. J. Neurosurg. 47:7–11, 1977.PubMedCrossRefGoogle Scholar
  84. Kruger, L., and Mosso, J. A. An evaluation of duality in the trigeminal afferent system. Adv. Neurol. 4:73–82, 1974.Google Scholar
  85. Kumazawa, T., and Perl, E. R. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: Indications of their place in dorsal horn functional organization. J. Comp. Neurol. 177:417–434, 1978.PubMedCrossRefGoogle Scholar
  86. Kumazama, T., Perl, E. R., Burgess, P. R., and Whitehorn, D. Ascending projections from marginal zone (lamina I) neurons of the spinal dorsal horn. J. Comp. Neurol. 162:1–11, 1975.CrossRefGoogle Scholar
  87. Kuru, M. Sensory Paths in the Spinal Cord and Brain Stem of Man, Sogensya, Tokyo, 1949.Google Scholar
  88. Lahuerta, J., Lipton, S. and Bowsher, D. Anatomical correlations in human cutaneous pinprick analgesia and pain relief following unilateral cervical cordotomy. Pain (Suppl.) 2:S312, 1984.Google Scholar
  89. Lalonde, J.-L., and Poirier, L. J. Study of various modalities of pain sensation in the monkey. J. Comp. Neurol. 112:185–195, 1959.PubMedCrossRefGoogle Scholar
  90. LaMotte, C. C., and de Lanerolle, N. C. Ultrastructure of chemically defined neuron systems on the dorsal horn of the monkey. III. Serotonin immunoreactivity. Brain Res. 274:65–77, 1983.PubMedCrossRefGoogle Scholar
  91. LaMotte, C. C., Johns, D. R., and de Lanerolle, N. C. Immunohistochemical evidence of indolamine neurons in monkey spinal cord. J. Comp. Neurol. 206:359–370, 1982.PubMedCrossRefGoogle Scholar
  92. Larson, C. R., and Kistler, M. K. Periaqueductal gray neuronal activity associated with laryngeal EMG and vocalization in the awake monkey. Neurosci. Lett. 46:261–266, 1984.PubMedCrossRefGoogle Scholar
  93. Levitt, M., and Schwartzman, R. J. Spinal sensory tracts and two-point tactile sensitivity. Anat. Rec. 154:377, 1966.Google Scholar
  94. Light, A. R. Spinal projections of physiological identified axons from the rostral medula of cats. Adv. Pain Res. Ther. 5:373–379, 1983.Google Scholar
  95. Light, A. R., and Perl, E. R. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J. Comp. Neurol. 186:133–150, 1979a.PubMedCrossRefGoogle Scholar
  96. Light, A. R., and Perl, E. R. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J. Comp. Neurol. 186:117–131, 1979b.PubMedCrossRefGoogle Scholar
  97. Light, A. R., Kavookjian, A. M., and Petrusz, P. The ultrastructure and synaptic connections of serotonin-immunoreactive terminals in spinal laminae I and II. Somatosen. Res. 1:33–50, 1983.CrossRefGoogle Scholar
  98. Lippert, R. G., Hosobuchi, Y., and Nielsen, S. L. Spinal commissurotomy. Surg. Neurol. 2:373–377, 1974.PubMedGoogle Scholar
  99. Lippman, H. H., and Kerr, F. W. L. Light and electron microscopic study of crossed ascending pathways in the anterolateral funiculus in monkey. Brain Res. 40:496–499, 1972.PubMedCrossRefGoogle Scholar
  100. Lipton, S. Percutaneous cervical cordotomy. Adv. Pain Res. Ther. 2:425–438, 1979.Google Scholar
  101. Loeser, J. D., and Ward, A. A. Some effects of deafferentation on neurons of the cat spinal cord. Arch. Neurol. 17:629–636, 1967.PubMedCrossRefGoogle Scholar
  102. Mantyh, P. W. The spinothalamic tract in the primate: A re-examination using wheatgerm agglutinin conjugated to horseradish peroxidase. Neuroscience 9:847–862, 1983.PubMedCrossRefGoogle Scholar
  103. Marks, L. E., and Stevens, J. C. Spatial summation of warmth: Influence of duration and configuration of the stimulus. Am. J. Psychol 86:251–267, 1973.PubMedCrossRefGoogle Scholar
  104. Matsushita, M., and Tanami, T. Contralateral termination of primary afferent axons in the sacral and caudal segments of the cat, as studied by anterograde transport of horseradish peroxidase. J. Comp. Neurol. 220:206–218, 1983.PubMedCrossRefGoogle Scholar
  105. Matsushita, M., Hosoya, Y. and Ikeda, M. Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 184:81–106, 1979.PubMedCrossRefGoogle Scholar
  106. Maunz, R. A., Pitts, M. G., and Peterson, B. W. Cat spinoreticular neurons: Locations, responses and changes in responses during repetitive stimulation. Brain Res. 148:365–379, 1978.PubMedCrossRefGoogle Scholar
  107. May, W. P. The afferent path. Brain 29:742–803, 1906.CrossRefGoogle Scholar
  108. Mayer, D. J., Price, D. D., Becker, D. P., and Young, H. F. Threshold for pain from anterolateral quadrant stimulation as a predictor of success of percutaneous cordotomy for relief of pain. J. Neurosurg. 43:445–447, 1975.PubMedCrossRefGoogle Scholar
  109. Mazars, G., Rose, R., and Pansini, A. Stereotactic coagulation of the spinothalamic tract for intractable trigeminal pain. J. Neurol. Neurosurg. Psychiatry 23:352–361, 1960.Google Scholar
  110. McMahon, S. B., and Wall, P. D. A system of rat spinal cord lamina 1 cells projecting through the contralateral dorsolateral funiculus. J. Comp. Neurol. 214:217–223, 1983.PubMedCrossRefGoogle Scholar
  111. Mehler, W. R. Some observations on secondary ascending afferent systems in the central nervous system, in: Pain (R. S. Knighton and P. R. Dumke, eds.), Little, Brown, Boston, 1966, pp. 11–32.Google Scholar
  112. Mehler, W. R. Some neurological species differences—a posteriori. Ann. N.Y. Acad. Sci. 167:424–468, 1969.CrossRefGoogle Scholar
  113. Mehler, W. R. Central pain and the spinothalamic tract. Adv. Neurol. 4:127–146, 1974.Google Scholar
  114. Mehler, W. R., Feferman, M. E., and Nauta, W. J. H. Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 83:718–750, 1960.PubMedCrossRefGoogle Scholar
  115. Melzack, R., and Casey, K. L. Sensory, motivational, and central control determinants of pain, in: The Skin Senses (D. R. Kenshalo, ed.), Charles C. Thomas, Springfield, IL, 1968, pp. 423–439.Google Scholar
  116. Melzack, R., and Loeser, J. D. Phantom body pain in paraplegics: Evidence for a central “pattern generating mechanism” for pain. Pain 4:195–210, 1978.PubMedCrossRefGoogle Scholar
  117. Mendell, L. M., and Wall, P. D. Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibers. Nature 206:97–99, 1965.PubMedCrossRefGoogle Scholar
  118. Mikula, F., Siroky, J., and Zapletal, B. Le traitement des crises gastraligiques par 1a tractotomie mesencephalique bilaterale et ses complications auditives inattendues. Rev. Otoneurooftal (Buenos Aires) 31:456–463, 1959.Google Scholar
  119. Moffie, D. Spinothalamic fibres, pain conduction and cordotomy. Clin. Neurol. Neurosurg. 4:261–268, 1975.CrossRefGoogle Scholar
  120. Molenaar, L, and Kuypers, H. G. J. M. Cells of origin of propriospinal fibers and of fibers ascending to supraspinal levels. A HRP study in cat and rhesus monkey. Brain Res. 152:429–450, 1978.PubMedCrossRefGoogle Scholar
  121. Mullen, S., Hekmatpanah, J., Dobben, G., and Beckman, B. A. Percutaneous, intramedullary cordotomy utilizing the unipolar anodal electrolytic lesion. J. Neurosurg. 22:548–553, 1965.CrossRefGoogle Scholar
  122. Nadelhaft, I., Roppolo, J., Morgan, D., and de Groat, W. D. Parasympathetic preganglionic neurons and visceral primary Afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. J. Comp. Neurol 216:36–52, 1983.PubMedCrossRefGoogle Scholar
  123. Nahin, R. L., Madsen, A. M., and Geisler, G. J., Jr. Anatomical and physiological studies of the gray matter surrounding the spinal cord central canal. J. Comp. Neurol. 220:321–335, 1983.PubMedCrossRefGoogle Scholar
  124. Nashold, B. S., Jr. Wilson, W. P., and Slaughter, G. The midbrain and pain. Adv. Neurol. 4:191–196, 1974.Google Scholar
  125. Nathan, P. W. Reference of sensation at the spinal level. J. Neurol. Neurosurg. Psychiatry 19:88–100, 1956.PubMedCrossRefGoogle Scholar
  126. Nathan, P. W. Results of anterolateral cordotomy for pain in cancer. J. Neurol Neurosurg. Psychiatry 26:353–362, 1963.PubMedCrossRefGoogle Scholar
  127. Nathan, P. W., and Rice, R. C. The localization of warm stimuli. Neurology (Minneap.) 16:533–540, 1966.CrossRefGoogle Scholar
  128. Nathan, P. W., and Smith, M. C. The centrifugal pathway for micturition within the spinal cord. J. Neurol. Neurosurg. Psychiatry 21:177–189, 1958.PubMedCrossRefGoogle Scholar
  129. Nathan, P. W., and Smith, M. C. Fasciculi proprii of the spinal cord in man. Brain 82:610–668, 1959.PubMedCrossRefGoogle Scholar
  130. Nathan, P. W., and Smith, M. C. Some tracts of the anterior and lateral columns of the spinal cord, in: Pain (R. S. Knighton and P. R. Dumke, eds.), Little, Brown, Boston, 1966, pp. 47–57.Google Scholar
  131. Nathan, P. W., and Smith, M. C. Clinico-anatomical correlation in anterolateral cordotomy. Adv. Pain Res. Ther. 3:921–926, 1979.Google Scholar
  132. Nauta, W. J. H., and Kuypers, H. G. J. M. Some ascending pathways in the brain stem reticular formation, in: Reticular Formation of the Brain (H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay and R. T. Costello, eds.), Little, Brown, Boston, 1958, pp. 3–30.Google Scholar
  133. Netsky, M. G. Syringomyelia. Arch. Neurol. Psychiatry 70:741–777, 1953.CrossRefGoogle Scholar
  134. Nijensohn, D. E., and Kerr, F. W. L. The ascending projections of the dorsolateral funiculus of the spinal cord in the primate. J. Comp. Neurol. 161:459–470, 1975.PubMedCrossRefGoogle Scholar
  135. Noordenbos, W. Pain, Elsevier, New York, 1959.Google Scholar
  136. Ochoa, J. Peripheral unmyelinated units in man: Structure, function, disorder and role in sensation. Adv. Pain Res. Ther. 6:53–68, 1984.Google Scholar
  137. Ogle, W. S., French, L. A., and Peyton, W. T. Experiences with high cervical chordotomy. J. Neurosurg. 13:81–87, 1956.PubMedCrossRefGoogle Scholar
  138. Papo, I. Spinal posterior rhizotomy and commissural myelotomy in the treatment of cancer pain. Adv. Pain Res. Ther. 2:439–448, 1979a.Google Scholar
  139. Papo, I. Open cordotomy in the treatment of cancer pain. Adv. Pain Res. Ther. 2:449–452, 1979b.Google Scholar
  140. Papo, I., and Luongo, A. High cervical commissural myelotomy in the treatment of pain. J. Neurol. Neurosurg. Psychiatry 39:705–710, 1976.PubMedCrossRefGoogle Scholar
  141. Petren, K. Ein Beitrag zur Pfage vom Verlaufe der Bahnen der Hautsinne im Ruckenmarke. Scand. Arch. Physiol. 13:9–98, 1902.CrossRefGoogle Scholar
  142. Poirier, L. J., and Bertrand, C. Experimental and anatomical investigation of the lateral spinothalamic and spinotectal tracts. J. Comp. Neurol. 102:745–758, 1955.PubMedCrossRefGoogle Scholar
  143. Pool., J. L. Posterior cordotomy for relief of phantom limb pain. Ann. Surg. 124:386–391, 1946.CrossRefGoogle Scholar
  144. Price, D. D., and Dubner, R. Neurons that subserve the sensory discriminative aspects of pain. Pain 3:307–338, 1977.PubMedCrossRefGoogle Scholar
  145. Price, D. D., and Mayer, D. J. Neurophysiological characterization of anterolateral quadrant neurons subserving pain in M. mulatto. Pain 1:59–72, 1975.PubMedCrossRefGoogle Scholar
  146. Price, D. D., Hayes, R. L., Ruda, M., and Dubner, R. Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. J. Neurophysiol. 41:993–947, 1978.Google Scholar
  147. Putnam, T.J. Myelotomy of the commissure. Arch. Neurol. Psychiatry 32:1189–1193, 1934.CrossRefGoogle Scholar
  148. Ramon Y Cajal, S. Histologie du Systeme Nerveux de l’Homme et des Vertebres, Vol. I, Instituto Cajal, Madrid, 1909.Google Scholar
  149. Ranson, S. W. The tract of Lissauer and the substantia gelatinosa Rolandi. Am.J. Anat. 16:97–126, 1914.CrossRefGoogle Scholar
  150. Ranson, S. W., and von Hess, C. L. The conduction within the spinal cord of the afferent impulses producing pain and the vasomotor reflexes. Am. J. Physiol. 38:128–152, 1915.Google Scholar
  151. Ray, B. S., and Wolff, H. G. Studies on pain. “Spread of pain”; evidence on site of spread within the neuraxis of effects of painful stimulation. Arch. Neurol. Psychiatry 53:257–261, 1945.CrossRefGoogle Scholar
  152. Rexed, B. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 196:415–466, 1952.CrossRefGoogle Scholar
  153. Ritz, L. A., Greenspan, J. D. and Vierck, C.J. Jr. Behavioral tests of the effects of anterolateral chordotomy in primates. Pain (Suppl.) 1: 289, 1981.CrossRefGoogle Scholar
  154. Roulhac, C. E. High cervical chordotomy. A preliminary report. Surgery 34:288–295, 1953.PubMedGoogle Scholar
  155. Rustioni, A. and Kaufman, A. B. Identification of cells of origin of non-primary Afferents to the dorsal column nuclei of the cat. Exp. Brain Res. 27:1–14, 1977.PubMedCrossRefGoogle Scholar
  156. Scheibel, M. E., and Scheibel, A. B. Patterns of organization in specific and non-specific thalamic fields, in: The Thalamus, (D. P. Purpura and M. D. Yahr, eds.), Columbia University Press, New York, 1966, pp. 13–47.Google Scholar
  157. Schmauss, C., and Yaksh, T. L. In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J. Pharmacol Exp. Ther. 228:1–12, 1984.PubMedGoogle Scholar
  158. Schneider, R. C. Syringomyelia, in: Correlative Neurosurgery (R. C. Schneider, E. A. Kahn, E. C. Crosby, and J. Taren, eds.), Charles C. Thomas, Springfield, IL, 1982, pp. 1010–1049.Google Scholar
  159. Schvarcz, J. R. Stereotactic extralemniscal myelotomy. J. Neurol. Neurosurg. Psychiatry 39:53–57, 1976.PubMedCrossRefGoogle Scholar
  160. Schvarcz, J. R. Functional exploration of the spinomedullaryjunction. Acta Neurochir. 24 (Suppl.): 179–185, 1977.CrossRefGoogle Scholar
  161. Schwartz, H. G. High cervical cordotomy—technique and results. Clin. Neurosurg. 8:282–293, 1962.PubMedGoogle Scholar
  162. Schwartz, H. G., and O’leary, J. L. Section of the spinothalamic tract at the level of the inferior olive. Arch. Neurol. Psychiatry 47:293–304, 1942.CrossRefGoogle Scholar
  163. Sheally, C. N., Tyner, C. F., and Taslitz, N. Physiological evidence of bilateral spinal projections of pain fibers in cats and monkeys. J. Neurosurg. 24:708–713, 1966.CrossRefGoogle Scholar
  164. Sheally, C. N., Mortimer, J. T., and Hagfors, N. R. Dorsal column electroanalgesia. J. Neurosurg. 32:560–564, 1970.CrossRefGoogle Scholar
  165. Sherman, J. C., and Arieff, A. J. Dissociation between pain and temperature in spinal cord lesions. J. Nerv. Ment. Dis. 108:285–292, 1948.PubMedCrossRefGoogle Scholar
  166. Smith, M. C. Observations on the topography of the lateral column of the human cervical spinal cord. Brain 80:263–272, 1957.PubMedCrossRefGoogle Scholar
  167. Sourek, K. Commissural myelotomy. J. Neurosurg. 31:524–527, 1969.PubMedCrossRefGoogle Scholar
  168. Sourek, K. Mediolongitudinal myelotomy. Prog. Neurol. Surg. 8:15–34, 1977.Google Scholar
  169. Spiller, W. G., and Martin, E. The treatment of persistent pain of organic origin in the lower part of the body by division of the anterolateral column of the spinal cord. J.A.M.A. 58:1489–1490, 1912.CrossRefGoogle Scholar
  170. Stookey, B. Further light on the transmission of pain and temperature within the spinal cord: Human cordotomy to abolish pain sense without destroying temperature sense. J. Nerve. Ment. Dis. 69:552–557, 1929.CrossRefGoogle Scholar
  171. Szentagothai, J. Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J. Comp. Neurol. 122:219–240, 1964.PubMedCrossRefGoogle Scholar
  172. Taren, J. A., and Kahn, E. A. Thoracic anterolateral cordotomy, in: Pain (R. S. Kntghton and P. R. Dumke, eds.), Little, Brown, Boston, 1966, pp. 299–310.Google Scholar
  173. Taren, J. A. Davis, R., and Crosby, E. C. Target physiologic corroboration in stereotaxic cervical cordotomy. J. Neurosurg. 30:569–584, 1969.PubMedCrossRefGoogle Scholar
  174. Tasker, R. R., and Organ, L. W. Percutaneous cordotomy. Confin. Neurol. 35:110–117, 1973.PubMedCrossRefGoogle Scholar
  175. Torvik, A. Sensory motor and reflex changes in two cases of intractable pain after stereotactic mesencephalic tractotomy. J. Neurol. Neurosurg. Psychiatry 22:299–305, 1959.PubMedCrossRefGoogle Scholar
  176. Tower, S., Bodian, D., and Howe, H. Isolation of intrinsic and motor mechanisms of the monkey’s spinal cord. J. Neurophysiol. 4:338–397, 1941.Google Scholar
  177. Trevino, D. L., and Carstens, E. Confirmation of the location of spinothalamic neurons in the cat and monkey by the retrograde transport of horseradish peroxidase. Brain Res. 98:177–182, 1975.PubMedCrossRefGoogle Scholar
  178. Trevino, D. L., Coulter, J. D., and Willis, W. D. Location of cells of origin of spinothalamic tract in lumber enlargement of the monkey. J. Neurophysiol. 36:750–761, 1973.PubMedGoogle Scholar
  179. Tuckett, R. P. Response of cutaneous receptors to a pruritic stimulus. Soc. Neurosci. Abstr. 6:428, 1980.Google Scholar
  180. Turnbull, F., Cordotomy for thalamic pain. Yale J. Biol. Med. 11:411–414, 1940.Google Scholar
  181. Turner, W. A., On hemisection of the spinal cord. Brain 14:496–522, 1891.CrossRefGoogle Scholar
  182. Uchida, Y., and Murao, S. Bradykinin-induced excitation of afferent cardiac sympathetic nerve fibers. Jpn. Heart J. 15:84–91, 1974.PubMedCrossRefGoogle Scholar
  183. Uchida, Y., Kamisaka, K., and Ueda, H. Two types of renal mechanoreceptors. Jpn. Heart J. 12:233–241, 1971.PubMedCrossRefGoogle Scholar
  184. Uchida, Y., Kamisaka, K., Murao, S., and Ueda, H. Mechanosensitivity of afferent cardiac sympathetic nerve fibers. Am. J. Physiol. 226:1088–1093, 1974.PubMedGoogle Scholar
  185. van Gehuchten, A., Anatomie du Systeme Nerveux de l’Homme, Louvain, 1906.Google Scholar
  186. Vierck, C. J., Jr. Alterations of spatio-tactile discrimination after lesions of primate spinal cord. Brain Res. 58:69–79, 1973.PubMedCrossRefGoogle Scholar
  187. Vierck, C. J., Jr. Tactile movement detection and discrimination following dorsal column lesions in monkeys. Exp. Brain Res. 20:311–346, 1974.CrossRefGoogle Scholar
  188. Vierck, C. J., Jr. Absolute and differential sensitivities to touch stimuli after spinal cord lesions in monkeys. Brain Res. 146:279–294, 1977.CrossRefGoogle Scholar
  189. Vierck, C. J., Jr. The spinal lemniscal pathways, in: Handbook of the Spinal Cord (R. Davidoff, ed.), Marcel Dekker, New York, 1984, pp. 673–750.Google Scholar
  190. Vierck, C. J., Jr., and Cooper, B. Y. Guidelines for assessing pain reactions and pain modulation in laboratory animal subjects. Adv. Pain Res. Ther. 6:305–322, 1984.Google Scholar
  191. Vierck, C. J., Jr., and Luck, M. M. Loss and recovery of reactivity to noxious stimuli in monkeys with primary spinothalamic chordotomies, followed by secondary and tertiary lesions of other cord sectors. Brain 102:233–248, 1979.PubMedCrossRefGoogle Scholar
  192. Vierck, C. J., Jr., and Rand, R. Localization of touch on glabrous skin following dorsal column lesion in a primate. Soc. Neurosci. Abstr. 5:715, 1979.Google Scholar
  193. Vierck, C. J., Jr., Hamilton, D. M., and Thornby, J. I. Pain reactivity of monkeys after lesions to the dorsal and lateral columns of the spinal cord. Exp. Brain Res. 13:140–158, 1971.PubMedCrossRefGoogle Scholar
  194. Vierck, C. J., Jr., Cohen, R. H., and Cooper, B. Y. Effect of spinal tractotomy on spatial sequence recognition in macaques. J. Neurosci. 3:280–290, 1983a.PubMedGoogle Scholar
  195. Vierck, C. J., Jr., Cooper, B. Y., and Cohen, R. H. Human and non-human primates reactions to painful electrocutaneous stimuli and to morphine, in: Animal Pain Perception and Alleviation (R. L. Kitchell and H.H. Erickson, eds.), American Physiological Society, Bethesda, 1983b, pp. 117–132.CrossRefGoogle Scholar
  196. Vierck, C. J., Jr., Cooper, B. Y., Franzen, O., Ritz, L. A., and Greenspan, J. D. Behavioral analysis of CNS pathways and transmitter systems involved in conduction and inhibition of pain sensations and reactions in primates, in: Progress in Psychobiology and Physiological Psychology, Vol. 10 (J. Sprague and A. Epstein, eds.), Academic Press, New York, 1983c, pp. 113–165.Google Scholar
  197. Voris, H. C., Ipsilateral sensory loss following chordotomy: Report of a case. Arch. Neurol. Psychiatry 65:95–96, 1951.CrossRefGoogle Scholar
  198. Walker, A. E., The spinothalamic tract in man. Arch. Neurol. Psychiatry 43:284–298, 1940.CrossRefGoogle Scholar
  199. Walker, A. E., Central representation of pain. Proc. Assoc. Res. Nerv. Ment. Dis. 23:63–85, 1943.Google Scholar
  200. Walker, A. E., The neurosurgical treatment of intractable pain. Lancet 70:279–282, 1950.Google Scholar
  201. Wall, P. D., Cancer pain—neurogenic mechanisms. Pain (Suppl.) 2: S197, 1984.CrossRefGoogle Scholar
  202. Wall, P. D., and Noordenbos, W. Sensory functions which remain in man after complete transection of dorsal columns. Brain 100:641–653, 1977.PubMedCrossRefGoogle Scholar
  203. Weaver, T. A., and Walker, A. E. Topical arrangement within the spinothalamic tract of the monkey. Arch. Neurol. Psychiatry 46:877–883, 1941.CrossRefGoogle Scholar
  204. Westlund, K. N., Bowker, R. M., Ziegler, M. G., and Coulter, J. D. Origins and terminations of descending noradrenergic projections to the spinal cord of monkey. Brain Res. 292:1–16, 1984.PubMedCrossRefGoogle Scholar
  205. White, J. C. Sensory innervation of the viscera. Studies on visceral afferent neurones in man based on neurosurgical procedures for the relief of intractable pain. Proc. Assoc. Res. Nerv. Ment. Dis. 23:373–390, 1943.Google Scholar
  206. White, J. C. Anterolateral cordotomy—its effectiveness in relieving pain of non-malignant disease. Neurochirurgia 6:83–102, 1963.PubMedGoogle Scholar
  207. White, J. C. Operations for the relief of pain in the torso and extremities: Evaluation of their effectiveness over long periods, in: Pain (A. Soulairac, J. Cahn, and J. Charpentier, eds.), Academic Press, New York, 1968, pp. 503–519.Google Scholar
  208. White, J. C., and Sweet, W. H. Pain and the Neurosurgeon: A Forty-Year Experience, Charles C. Thomas, Springfield, IL, 1969.Google Scholar
  209. White, J. C., Sweet, W. H., Hawkins, R., and Nilges, R. G. Anterolateral cordotomy: Results, complications and causes of failure. Brain 73:346–367, 1950.PubMedCrossRefGoogle Scholar
  210. White, J. C., Richardson, E. P., Jr, and Sweet, W. H. Upper thoracic cordotomy for relief of pain. Ann. Surg. 144:407–420, 1956.PubMedCrossRefGoogle Scholar
  211. Whitsel, B. L., Petrucelli, L. M., and Sapiro, G. Modality representation in the lumbar and cervical fasiculus gracilis of squirrel monkey. Brain Res. 15:67–78, 1969.PubMedCrossRefGoogle Scholar
  212. Willcockson, W. S., Chung, J. M., Hori, Y., Lee, K. H., and Willis, W. D. Effects of ionto-phoretically released amino acids and amines on primate spinothalamic tract cells. J. Neurosci. 4:732–740, 1984.PubMedGoogle Scholar
  213. Willis, W. D. Control of nociceptive transmission in the spinal cord, in: Progress in Sensory Physiology, Vol. 3 (D. Ottoson, ed.), Springer-Verlag, New York, 1982, pp. 1–159.Google Scholar
  214. Willis, W. D., and Coggeshall, R. E. Sensory Mechanisms of the Spinal Cord, Plenum Press, New York, 1978.CrossRefGoogle Scholar
  215. Willis, W. D., Trevino, D. L., Coulter, J. D., and Maunz, R. A. Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol. 37:358–372, 1974.PubMedGoogle Scholar
  216. Willis, W. D., Kenshalo, D. R., Jr. and Leonard, R. B. The cells of origin of the primate spinothalamic tract. J. Comp. Neurol. 188:543–574, 1979.PubMedCrossRefGoogle Scholar
  217. Wycis, H. T., and Spiegel, E. A. Long-range results in the treatment of intractable pain by stereotaxic midbrain surgery. J. Neurosurg. 19:101–107, 1962.PubMedCrossRefGoogle Scholar
  218. Yezierski, R. P. Gerhart, K. D., Schrock, F. J., and Willis, W. D. A further examination of effects of cortical stimulation on primate spinothalamic tract cells. J. Neurophysiol. 49:424–441, 1983.PubMedGoogle Scholar
  219. Yoss, R. C. Studies of the spinal cord. Part 3. Pathways for deep pain within the spinal cord and brain. Neurology (Minneap.) 3:163–175, 1953.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Charles J. VierckJr.
    • 1
  • Joel D. Greenspan
    • 2
  • Louis A. Ritz
    • 3
  • David C. Yeomans
    • 1
  1. 1.Department of Neuroscience and Center for Neurobiological SciencesUniversity of Florida College of MedicineGainesvilleUSA
  2. 2.Department of PhysiologyUniversity of North Carolina School of MedicineChapel HillUSA
  3. 3.Departments of Neurological Surgery and NeuroscienceUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations